Advertisement

Journal of Applied Electrochemistry

, Volume 30, Issue 9, pp 1043–1051 | Cite as

Hypochlorite generation on Ru–Pt binary oxide for treatment of dye wastewater

  • C.-H. Yang
  • C.-C. Lee
  • T.-C. Wen
Article

Abstract

Ruthenium–platinum binary oxides [(Ru + Pt)O x ] were coated on titanium substrates by thermal decomposition. The surface morphologies and elemental analyses of these electrodes were examined by means of scanning electron microscopy. The electrochemical behaviour was characterized by cyclic voltammetry (CV) and linear scanning voltammetry (LSV). The effects of electrolyte conditions on the current efficiency (CE) of hypochlorite production on binary (Ru + Pt)O x electrodes and the treatment of a high salt-containing dye wastewater using this hypochlorite were also investigated. The highest CE for hypochlorite production occurred on the RP1 (20 mol% Pt in precursor) electrode. The major factors influencing CE for hypochlorite production were the electrolyte flow rate, current density and chloride ion (C1) concentration. The RP1 electrode exhibited the best removal of organics and chromophoric groups in the dye wastewater. On this electrode, better removal of organics and chromophoric groups was obtained at 300 mA cm−2. The colour of black–red dye wastewater became light yellow when a charge of 13.2 A h was passed while the COD of the wastewater decreased from 10 500 to 1250 mg L−1.

dye wastewater hypochlorite production Ruthenium–Platinum binary oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Beer, US Patent 3 632 498 (1972).Google Scholar
  2. 2.
    H. Beer, US Patent 3 711 385 (1973).Google Scholar
  3. 3.
    G. Bianchi, V. DeNora, P. Gallone and A. Nidola, US Patent 3 616 445 (1971).Google Scholar
  4. 4.
    G. Bianchi, V. DeNora, P. Gallone and A. Nidola, US Patent 3 948 751 (1971).Google Scholar
  5. 5.
    S. Trasatti, ‘Electrodes of Conductive Metallic Oxides, Part B’ (Elsevier, Amsterdam, 1981), pp. 627-59.Google Scholar
  6. 6.
    R. Seyd, J. Orehotsky, W. Visscher and S. Srinivasan, J. Electrochem. Soc. 129 (1982) 1990.Google Scholar
  7. 7.
    G. Battaglin, A. Carnera, P. Mazzoldi, G. Lodi, P. Bonora, A. Eaghetti and S. Trasatti, J. Electroanal. Chem. 135 (1982) 313.Google Scholar
  8. 8.
    L.D. Burke and M. McCarthy, Electrochim. Acta 29 (1984) 211.Google Scholar
  9. 9.
    S. Trasatti, ‘Electrodes of Conductive Metallic Oxides. Part A’ (Elsevier, New York, 1980), pp. 146-52.Google Scholar
  10. 10.
    S.M. Lin and T.C. Wen, J. Electrochem. Soc. 140 (1993) 2265.Google Scholar
  11. 11.
    F. Hine, M. Yasuda and T. Yoshid, J. Electrochem. Soc. 124 (1977) 500.Google Scholar
  12. 12.
    C. Iwakura and K. Sakamoto, J. Electrochem. Soc. 132 (1985) 2420.Google Scholar
  13. 13.
    T.A.F. Lassali, J.F.C. Boodts, S.C. DeCastro, R. Landers and S. Trasatti, Electrochim. Acta 38 (1993) 95.Google Scholar
  14. 14.
    T.C. Wen and C.C. Hu, J. Electrochem. Soc. 139 (1992) 2158.Google Scholar
  15. 15.
    J.A. Harrison, D.L. Caldwell and R.E. White, J. Electrochem. Soc. 29 (1983) 1561.Google Scholar
  16. 16.
    J.A. Harrison, D.L. Caldwell and R.E. White, J. Electrochem. Soc. 29 (1984) 203.Google Scholar
  17. 17.
    G.H. Kelsall, J. Appl. Electrochem. 14 (1984) 177.Google Scholar
  18. 18.
    R.E. Buys and T.D. Reynolds, Proc. 36th Industrial Waste Conference, Purdue University (1981), p. 29.Google Scholar
  19. 19.
    D.W. Wertter and A.G. Hodgson, Proc. 32nd Industrial Waste Conference, Purdue University (1977), p. 1.Google Scholar
  20. 20.
    G.H. Davis, J.H. Koon and C.E. Adam, Proc. 32nd Industrial Waste Conference, Purdue University (1977), p. 981.Google Scholar
  21. 21.
    J.L. Mahloch, A. Slindala, E.C. McGri., Jr. and W.A. Barnett, Proc. 29th Industrial Waste Conference, Purdue University (1974) p. 44.Google Scholar
  22. 22.
    E. Gilbert, Water Sci. & Technol. 14 (1982) 849.Google Scholar
  23. 23.
    D. Zhou, M.W. Cai and W.Q. Hui, Water Sci. & Technol. 19 (1987) 391.Google Scholar
  24. 24.
    L.C. Chiang, J.E. Chang and T.C. Wen, Water Res. 29 (1995) 671.Google Scholar
  25. 25.
    'standard Methods for the Examination of Water and Waste-water', APHA 16th edn (1985), p. 426.Google Scholar
  26. 26.
    G.E.P. Box, W.G. Hunter and J.S. Hunter, ‘Statistics for Experiments’, (J. Wiley & sons, New York, 1978), pp. 374-433.Google Scholar
  27. 27.
    C. Comninellis and G.P. Vercesi, J. Appl. Electrochem. 21 (1991) 136.Google Scholar
  28. 28.
    M.E.G. Lyons and L.D. Burke, J. Chem. Soc., Faraday Trans. 1, 83 (1987) 299.Google Scholar
  29. 29.
    L.D. Burke and O.J. Murphy, J. Electroanal. Chem. 96 (1979) 19.Google Scholar
  30. 30.
    S. Trasatti, op. cit. [9], p. 301.Google Scholar
  31. 31.
    C.C. Hu and T.C. Wen, J. Electrochem. Soc. 14 (1995) 1376.Google Scholar
  32. 32.
    C.C. Hu and T.C. Wen, Electrochim. Acta 40 (1995) 495.Google Scholar
  33. 33.
    T.C. Wen and C.C. Hu, J. Electrochem. Soc. 140 (1993) 998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C.-H. Yang
    • 1
  • C.-C. Lee
    • 1
  • T.-C. Wen
    • 2
  1. 1.Department of Environmental and Chemical EngineeringKung Shan University of TechnologyTainanTaiwan
  2. 2.Department of Chemical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations