Journal of Applied Electrochemistry

, Volume 30, Issue 7, pp 767–775 | Cite as

An experimental investigation of bubble-induced free convection in a small electrochemical cell

  • P. Boissonneau
  • P. Byrne


The sodium chlorate production process is run in large electrolysers where electrolyte flows between the electrodes due to the natural convection from hydrogen gas evolution. A brief review is given of electrolytic gas generation at electrode surfaces and of previous studies. A small, enclosed rectangular cell was used to electrolyse both a Na2SO4 and a NaCl/NaClO3 solution, in order to produce hydrogen and oxygen bubbles at one or both of the electrodes. The two-phase flow regimes, bubble sizes, gas fraction and fluid velocities between the electrodes were investigated using microscope enhanced visualisation, laser doppler velocimetry and particle image velocimetry. The practicality of each of the measuring methods is analysed and it is concluded that laser doppler velocimetry is the most robust method for measuring such systems. The experimental results are discussed and conclusions are drawn relating gas evolution to the hydrodynamics of electrolyte flowing through a narrow vertical channel. The major conclusions are that fluid flow in systems with bubble evolution can transform from a laminar to a turbulent behaviour, throughout the length of the cell, and that both turbulence and laminar behaviour can exist across the cell channel at the same horizontal plane.

bubble evolution gas evolution hydrodynamics hydrogen gas LDV 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Vogt, in B.E. Conway, J.O'M. Bockris, E. Yeager, S.U.M. Khan and R.E. White (eds) 'Comprehensive Treatise of Electrochemistry', Vol. 6 (Plenum Press, New York, 1983), pp. 445-489.Google Scholar
  2. 2.
    Ph. Byrne, D. Simonsson, E. Fontes and D. Lucor, in A. Alemany, Ph. Marty and J.P. Thibault (eds) 'Fluid Mechanics and its Applications', Vol. 51: 'Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows' (Kluwer Academic, Dordrecht, The Netherlands, 1999), pp. 137-152.Google Scholar
  3. 3.
    N. Ibl and D. Landolt, J. Electrochem. Soc. 115 (1968) 713.Google Scholar
  4. 4.
    A.R. Despic, M.M. Jaksic and B.Z. Nikolic, J. Appl. Electrochem. 2 (1972) 337.Google Scholar
  5. 5.
    S.G. Bankoff, ASME, J. Heat Transfer 82 (1960) 265.Google Scholar
  6. 6.
    N. Zuber and J.A. Finlay, J. Heat Transfer 87 (1965) 453.Google Scholar
  7. 7.
    G.B. Wallis, Paper no. 38, ASME, International Heat Transfer Conference, Boulder, CO., 2 (1961) 319.Google Scholar
  8. 8.
    S.W. Beyerlein, R.K. Cossmann and H.J. Ritcher, Int. J. Multiphase Flow 11 (1985) 629.Google Scholar
  9. 9.
    N. Clark and N. Flemmer, Int. J. Multiphase Flow 12 (1986) 299.Google Scholar
  10. 10.
    M. Sadatomi and Y. Sato, Int. J. Multiphase Flow 8 (1982) 641.Google Scholar
  11. 11.
    H. Vogt, Electrochim. Acta 29 (1984) 167.Google Scholar
  12. 12.
    H. Vogt, Electrochim. Acta 29 (1984) 175.Google Scholar
  13. 13.
    R.R. Lessard and A.S. Zieminski, Ind. Eng. Chem. Fundam. 10 (1971) 260.Google Scholar
  14. 14.
    G. Marrucci and L. Nicodemo, Chem. Eng. Sci. 22 (1967) 1257.Google Scholar
  15. 15.
    J.P. Prince and H.W. Blanch, AI Chem. Eng. J. 36 (1990) 1485.Google Scholar
  16. 16.
    L.J.J. Janssen, Electrochim. Acta 34 (1989) 161.Google Scholar
  17. 17.
    J. Venczel, PhD thesis, ETH, Zurich, Prom no. 3673 (1961).Google Scholar
  18. 18.
    S.J.D. Van Strallen and W.M. Sluyter, J. Appl. Electrochem. 15 (1985) 527.Google Scholar
  19. 19.
    H. Vogt, Electrochim. Acta 34 (1989) 1429.Google Scholar
  20. 20.
    H. Vogt, Electrochim. Acta 26 (1981) 1311.Google Scholar
  21. 21.
    J.P. Glas and J.W. Westwater, Int. J. Heat Mass Transf. 7 (1964) 1427.Google Scholar
  22. 22.
    D. Landolt, R. Acosta, R.H. Muller and C.W. Tobias, J. Electrochem. Soc. 117 (1970) 839.Google Scholar
  23. 23.
    L.J.J. Janssen, Electrochim. Acta 23 (1978) 81.Google Scholar
  24. 24.
    N. Ibl, E. Adam, J. Venczel and E. Schalch, Chem. Ing. Tech. 43 (1971) 202.Google Scholar
  25. 25.
    H. Vogt, 'Ein Beitrag zum Stoffubergang an gasentwickelnden Elelktroden', PhD thesis, University of Stuttgart, Germany (1977).Google Scholar
  26. 26.
    L.J.J. Janssen and J.G. Hoogland, Electrochim. Acta 15 (1970) 1013.Google Scholar
  27. 27.
    Y. Fukunaka, K. Suzuki, A. Ueda and Y. Kondo, J. Electrochem. Soc. 136 (1989) 1002.Google Scholar
  28. 28.
    D. Ziegler and J.W. Evans, J. Electrochim. Soc. 133 (1986) 567.Google Scholar
  29. 29.
    F. Hine, M. Yasuda, R. Nakaruma and T. Noda, J. Electrochim. Soc. 122 (1975) 1185.Google Scholar
  30. 30.
    J.M. Bisang, J. Appl. Electrochem. 21 (1991) 760.Google Scholar
  31. 31.
    L.J.J. Janssen and G.J. Visser, J. Appl. Electrochim. 21 (1991) 386 and 753.Google Scholar
  32. 32.
    Y. Nishiki, K. Aoki, K. Tokuda and H. Matsuda, J. Appl. Electrochim. 16 (1986) 615.Google Scholar
  33. 33.
    P. Boissonneau, 'Propulsion MHD en eau de mer: étude des couplages hydrodynamique-électrochimie-électromagnetisme.' PhD thesis, UJF, Grenoble, France (1997).Google Scholar
  34. 34.
    F. Durst, A. Melling and J.H. Withlaw, 'Principles and Practice of Laser Doppler Anemometry' (Academic Press, London, 1976).Google Scholar
  35. 35.
    H. Schlichting, 'Boundary Layer Theory, 4th edn (McGraw-Hill, New York, 1960).Google Scholar
  36. 36.
    P. Boissonneau and J.P. Thibault, in A. Alemany, Ph. Marty and J.P. Thibault (eds) 'Fluid Mechanics and its Applications', Vol. 51: 'Transfer Phenomena in Magnetohydrodynamic and Electrocon-ducting Flows' (Kluwer Academic, Dordrecht, The Netherlands, 1999), pp. 251-268.Google Scholar
  37. 37.
    M. Lance and Bataille, Int. J. Fluid Mech. 222 (1991) 95.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Boissonneau
    • 1
  • P. Byrne
    • 1
  1. 1.Faxén Laboratory, Applied ElectrochemistryRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations