Advertisement

Euphytica

, 118:75 | Cite as

Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis syn. campestris L.) using bulked segregant analysis

  • Hidetoshi Ajisaka
  • Yasuhisa Kuginuki
  • Susumu Yui
  • Sueo Enomoto
  • Masashi Hirai
Article

Abstract

DNA markers linked to a locus controlling an extreme late bolting trait, which was originally found in a local cultivar of a non-heading leafy vegetable,‘Osaka Shirona Bansei’ (Brassica rapa L. ssp. pekinensis syn. campestris L.) were identified using bulked segregant analysis. A doubled haploid (DH) line, DH27, which is a progeny of ‘Osaka Shirona Bansei’, shows extreme late bolting, and bolts without vernalization. DH27 was crossed with a normal bolting DH line, G309. The plantlets of the parents, F1 and F2, were vernalized and then grown in a greenhouse. The bolting time of F2 plants showed a continuous distribution from 19 to 231 days after vernalization (DAV), suggesting the effects of a few major genes and polygenes. Possible linkage markers for this trait were screened by modified bulked segregant analysis (BSA). The BSA using four bulks suggested that a 530-bp RAPD band RA1255C was linked to a locus controlling the bolting trait. The RAPD band was cloned and used as a probe to detect RFLP. The fragment detected a single locus, BN007-1,the segregation of which in the F2 population matched that of RA1255C. Three other RAPDs were found to be linked to BN007-1. A quantitative trait locus(QTL) affecting the bolting time was detected around BN007-1 using MAPMAKER/QTL. Since the difference between bolting times of both the parental genotypes in the F2 was 138 days, these markers may be useful for a marker-assisted selection (MAS) in the breeding program for late bolting or bolting-resistant cultivars in B. rapa crops.

Brassica rapa L. syn. campestris L. bulked segregant analysis (BSA) DNA polymorphism flowering time late bolting quantitative trait locus (QTL) 

References

  1. Ajisaka, H., Y. Kuginuki, M. Shiratori, K. Ishiguro, S. Enomoto & M. Hirai, 1999. Mapping of loci affecting the cultural efficiency of microspore culture of Brassica rapa L. syn. campestris L. using DNA polymorphism. Breed Sci 49: 187–192.Google Scholar
  2. Barua, U.M., K.J. Chalmers, C.A. Hackett, W.T.B. Thomas, W. Powell & R. Waugh, 1993. Identification of RAPD markers linked to a Rhynchosporium-secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Heredity 71: 177–184.PubMedGoogle Scholar
  3. Bohuon, E.J.R., L.D. Ramsay, J.A. Craft, A.E. Arthur, D.F. Marshell, D.J. Lydiate & M.J. Kearsey, 1998. The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica rapa. Genetics 150: 393–401.PubMedGoogle Scholar
  4. Camargo, L.E.A. & T.C. Osborn, 1996. Mapping loci controlling flowering time in Brassica oleracea. Theor Appl Genet 92: 610–616.CrossRefGoogle Scholar
  5. Delourme, R., N. Foisset, R. Horvais, P. Barret, G. Champagne, W.Y. Cheung, B.S. Landry & M. Renard, 1998. Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet 97: 129–134.CrossRefGoogle Scholar
  6. Elers, B. & H.J. Wiebe, 1984. Flower formation of Chinese cabbage. I. Response to vernalization and photoperiods. Scientia Hortic 22: 219–231.CrossRefGoogle Scholar
  7. Ferreira, M.E., J. Satagopan, B.S. Yandell, P.H. Williams & T.C. Osborn, 1995. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90: 727–732.CrossRefGoogle Scholar
  8. Foisset, N., R. Delourme, P. Barret & M. Renard, 1995. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet 91: 756–761.CrossRefGoogle Scholar
  9. Hashizume, T., T. Sato & M. Hirai, 1993. Determination of genetic purity of hybrid seed in watermelon (Citrullus lanatus) and tomato (Lycopersicon esculentum) using random amplified polymorphic DNA (RAPD). Japan J Breed 43: 367–375.Google Scholar
  10. Jiang, C. & K.C. Sink, 1997. RAPD and SCAR markers linked to the sex expression locus Min asparagus. Euphytica 94: 329–333.CrossRefGoogle Scholar
  11. Lander, E., P. Green, J. Abrahamson, A. Barlow, M. Daley, S. Lincoln & L. Newburg, 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.PubMedCrossRefGoogle Scholar
  12. Lincoln, S.E., M.J. Daly & E.S. Lander, 1993. Mapping genes controlling quantitative traits using MAPMAKER/QTL Version 1.1. Whitehead Institute Technical Report.Google Scholar
  13. Mero, C.E. & S. Honma, 1985. Inheritance of bolting resistance in an intraspecific Chinese cabbage × Turnip cross. HortScience 20: 881–882.Google Scholar
  14. Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.PubMedCrossRefGoogle Scholar
  15. Murray, M. & W.F. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321–4325.PubMedGoogle Scholar
  16. Olson, M., L. Hood, C. Cantor & D. Bostein, 1989. A common language for physical mapping of the human genome. Science 245: 1434–1435.PubMedGoogle Scholar
  17. Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85: 985–993.CrossRefGoogle Scholar
  18. Pelsy, F. & D. Merdinoglu, 1996. Identification and mapping of random amplified polymorphic DNA markers linked to a rhizomania resistance gene in sugar beet (Beta vulgaris L.) by bulked segregant analysis. Plant Breeding 115: 371–377.CrossRefGoogle Scholar
  19. Pomper, K.W., A.N. Azarenko, N. Bassil, J.W. Davis & S.A. Mehlenbacher, 1998. Identification of random amplified polymorphic DNA (RAPD) markers for self-incompatibility alleles in Corylus avellana L. Theor Appl Genet 97: 479–487.CrossRefGoogle Scholar
  20. Poulsen, D.M.E., R.J. Henry, R.P. Johnston, J.A.G. Irwin & R.G. Rees, 1995. The use of bulk segregant analysis to identify a RAPD marker linked to leaf rust resistance in barley. Theor Appl Genet 91: 270–273.CrossRefGoogle Scholar
  21. Ronald, P.S., G.A. Penner, P.D. Brown & A. Brûlé-Babel, 1997. Identification of RAPD markers for percent hull in oat. Genome 40: 873–878.PubMedGoogle Scholar
  22. Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  23. Subudhi, P.K., R.P. Borkakati, S.S. Virmani & N. Huang, 1997. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis. Genome 40: 188–194.PubMedGoogle Scholar
  24. Teutonico, R.A. & T.C. Osborn, 1995. Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 91: 1279–1283.CrossRefGoogle Scholar
  25. Yui, S. & H. Yoshikawa, 1991. Bolting resistant breeding of Chinese cabbage. 1. Flower induction of late bolting variety without chilling treatment. Euphytica 52: 171–176.CrossRefGoogle Scholar
  26. Yui, S. & H. Yoshikawa, 1992. PBreeding of bolting resistance in Chinese cabbage (Brassica campestris). J Japan Soc Hortic Sci 26: 565–568.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Hidetoshi Ajisaka
    • 1
  • Yasuhisa Kuginuki
    • 1
  • Susumu Yui
    • 1
  • Sueo Enomoto
    • 1
  • Masashi Hirai
    • 1
  1. 1.National Research Institute of VegetablesOrnamental Plants & Tea (NIVOT), Ano, AgeMieJapan

Personalised recommendations