, Volume 115, Issue 2, pp 91–104 | Cite as

Geographical patterns of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: Quantitative characters

  • Amsalu Ayana
  • Endashaw Bekele


A total of 415 sorghum (Sorghum bicolor (L.) Moench) accessions representing different regions of Ethiopia, Eritrea and a group of introduced lines were evaluated for 15 quantitative characters to determine the extent and geographical pattern of morphological variation. The extent of variation was highly pronounced for agronomically important characters for sorghum. These characters included plant height, days for 50% flowering, peduncle exsertion, panicle length and width, number and length of primary branches per panicle and thousand seed weight. Significant regional variation was also observed for most of the characters. The results implied that environmental factors such as altitude, rainfall, temperature and growing period are important in regional variation. Mean for plant height and for days for 50% flowering showed clinal variation along the gradients of rainfall pattern and growing period in Ethiopia. Moreover, there were significant positive correlation coefficients between most of the characters. This included the correlation between agronomic characters of primary interest in sorghum breeding such as plant height and days for 50% flowering and also between various characters and the altitude of the collection sites. The implications of the results in plant breeding, germplasm collection and conservation as well as the probable sources of the wide range of variation are discussed.

clinal variation correlation germplasm landrace phenotypic variation Sorghum bicolor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-el-Gasim, E.H. & A.E. Kambal, 1975. Variability and interrelations among characters in indigenous grain sorghums of the Sudan. East Afr Agric For J 41: 125-133.Google Scholar
  2. Allard, R.W., 1970. Population structure and sampling methods. In: O.H. Frankel & E. Bennett (Eds.), Genetic Resources in Plants-Their Exploration and Conservation, pp. 97-107. IBP Handbook No. 11. F.A. Davis Company, Philadelphia, PA.Google Scholar
  3. Amurrio, J.M., A.M. de Ron & M.R. Escribano, 1993. Evaluation of pisum sativum landraces from the Northwest of Iberian Peninsula and their breeding value. Euphytica 66: 1-10.CrossRefGoogle Scholar
  4. Andrews, D.J. & P.J. Bramel-Cox, 1993. Breeding cultivars for sustainable crop production in low input dry land agriculture in the tropics. In: D.R. Buxton, R. Shibles, R.A. Forsberg, B.L. Blad, K.H. Asay, G.M. Paulsen & R.F. Wilson (Eds.), International Crop Science, pp. 211-223. Crop Sci Soc Amer Inc, Madison, Wisconsin, USA.Google Scholar
  5. Annicchiarico, P., L. Pecetti & A.B. Damania, 1995. Relationships between phenotypic variation and climatic factors in durum wheat landraces. Hereditas 122: 163-167.CrossRefGoogle Scholar
  6. Appa Rao, S., K.E. Prasada Rao, M.H. Mengesha & V. Gopal Reddy, 1996. Morphological diversity in sorghum germplasm from India. Genetic Resources and Crop Evolution 43: 559-567.CrossRefGoogle Scholar
  7. Appa Rao, S. & J.N. Mushonga, 1987. A Catalogue of Passport and Characterisation Data of Sorghum, Pearl Millet, and Finger Millet Germplasm from Zimbabwe.Google Scholar
  8. Ayyangar, G.N.R., 1942. The description of crop plant characters and their ranges of variation. IV. Variability of Indian sorghum. Indian J Agric Sci 12: 528-563.Google Scholar
  9. Bekele, E., 1984. Analysis of regional patterns of phenotypic diversity in the Ethiopian tetraploid and hexaploid wheats. Hereditas 100: 131-154.Google Scholar
  10. Brown, A.H.D., 1989a. The case of core collections. In: A.H.D. Brown, O.H. Frankel, D.R. Marshall & T.J. Williams (Eds.), The Use of Plant Genetic Rresources, pp. 136-156. Cambridge University Press, Cambridge.Google Scholar
  11. Brown, A.H.D., 1989b. Core collections: a practical approach to genetic resources management. Genome 31: 818-824.Google Scholar
  12. Brush, S.B., 1995. In situ conservation of landraces in centres of crop diversity. Crop Sci 53: 346-354.CrossRefGoogle Scholar
  13. Central Statistics Authority, 1995. Agricultural Sample Survey (1994/950, Report on Area and Production for Major Crops (Private Peasant Holdings, Main Season). Vol. 1, Statistical Bulletin 132, Addis Ababa, Ethiopia.Google Scholar
  14. Damania, A.B., L. Pecetti, C.O. Qualset & B.O. Humeid, 1996. Diversity and geographic distribution of adaptive traits in Triticum turgidum L. (durum group) wheat landraces from Turkey. Genetic Resources and Crop Evolution 43: 409-422.Google Scholar
  15. de Wet, J.M.J., J.R. Harlan & E.G. Price, 1976. Variability in Sorghum bicolor. In: JR. Harlan, J.M.J. de Wet & A.B. L. Stemler (Eds.), Origins of African Plant Domestication, pp. 453-463. Mouton, The Hague, Paris.Google Scholar
  16. Doggett, H., 1976. Sorghum. In: N.W. Simmonds (Ed.), Crop Evolution, pp. 112-117. Longman.Google Scholar
  17. Doggett, H., 1988. Sorghum, 2nd edition. Longman, UK.Google Scholar
  18. Doggett, H., 1991. Sorghum history in relation to Ethiopia. In: J.M.M. Engels, J.G. Hawkes & M. Worede (Eds.), Plant Genetic Resources of Ethiopia, pp. 140-159. Cambridge University Press, Cambridge.Google Scholar
  19. Doggett, H. & B.N. Majisu, 1968. Disruptive selection in crop improvement. Heredity 23: 1-22.Google Scholar
  20. Doggett, H. & K.E. Prasada Rao, 1995. Sorghum. In: J. Smartt & N.W. Simmonds (Eds.), Evolution of Crop Plants, 2nd edition, pp. 173-180, Longman Group UK limited.Google Scholar
  21. Duncan, R.R., 1996. Breeding and improvement of forage sorghums for the tropics. Adv Agron 57: 161-185.Google Scholar
  22. Due, M., D. Gonzalez-De-Leon, J.C. Glaszmann, I. Degremont, J. Chantereau, C. Lanaud & P. Hamon, 1994. RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet 88: 837-844.Google Scholar
  23. Esechie, H.A., J.W. Maranville & W.M. Ross, 1977. Relationship of stalk morphology and chemical composition to lodging resistance in sorghum. Crop Sci 17: 609-612.CrossRefGoogle Scholar
  24. Elings, A., 1991. Durum wheat landraces from Syria. II. Patterns of variation. Euphytica 54: 231-243.Google Scholar
  25. FAO, 1995. Production Yearbook. Vol. 49. FAO, Rome, Italy.Google Scholar
  26. Frankel, O.H., 1970. Evaluation and utilisation-Introductory remarks. In: O.H. Frankel and E. Bennett (Eds.), Genetic Resources in Plants-Their Exploration and Conservation, pp. 395-401. IBP Handbook No. 11. F.A. Davis Company, Philadelphia, PA.Google Scholar
  27. Gamachu, D., 1977. Aspects of Climate and Water Budget in Ethiopia. A Technical Monograph. Addis Ababa Univ. Press, Addis Ababa, Ethiopia.Google Scholar
  28. Gebrekidan, B., 1973. The importance of the Ethiopian sorghum germplasm in the world sorghum collection. Econ Bot 23: 442-445.Google Scholar
  29. Gebrekidan, B., 1981. Salient features of the sorghum breeding strategies used in Ethiopia. Eth J Agric Sci 3: 97-104.Google Scholar
  30. Gebrekidan, B. & B. Gebrehiwot, 1982. Sorghum Injera preparation and its quality parameters. In: International crop Research Institute for Semi-Arid Tropics (ICRISAT). In: Proceedings of the International Symposium on Sorghum Grain Quality, pp. 335-345. 28-31. October 1981, ICRISAT, Patancheru P.O, A.P., India.Google Scholar
  31. Gebrekidan, B. & Y. Kebede, 1979. The traditional culture and yield potentials of the Ethiopian high lysine sorghums. Eth J Agric Sci 1: 29-40.Google Scholar
  32. Gomez, K.A. & A.A. Gomez, (1984). Statistical Procedures for Agricultural Research, 2nd edition. John Wiley & Sons, Inc. New York.Google Scholar
  33. Harlan, J.R., 1975. Geographic patterns of variation in some cultivated plants. J Heredity 66: 182-191.Google Scholar
  34. Harlan, J.R., 1984. Evaluation of wild relatives of crop plants. In: J.W.H. Holden & J.T. Williams (Eds.), Crop Genetic Resources: Conservation and Evaluation, pp. 213-222. IBPGR, London.Google Scholar
  35. Harlan, J.R., 1992. Crops and Man, 2nd edition. American Society of Agronomy, Crop Science Society of America. Madison, Wisconsin.Google Scholar
  36. Harlan, J.R. & J.M.J. de Wet, 1972. A simplified classification of sorghum. Crop Sci 12: 172-176.CrossRefGoogle Scholar
  37. Harlan, J.R., J.M.J. de Wet & G. Price, 1973. Comparative evolution of cereals. Evolution 27: 325-325.CrossRefGoogle Scholar
  38. Hayward, M.D. & E.L. Breese, 1993. Population structure and variability. In: M.D. Hayward, N.O. Bosemark & I. Romagosa (Eds.), Plant Breeding: Principles and Prospects, pp. 16-29. Chapman & Hall.Google Scholar
  39. Hesketh, J.D., S.S. Chase & D.K. Nanda, 1969. Environmental and genetic modification of leaf number in maze, sorghum and Hungarian millet. Crop Sci 19: 460-467.CrossRefGoogle Scholar
  40. House, L.R., 1995. Sorghum: One of the world's great cereals. African Crop Sci J 3: 135-142.Google Scholar
  41. IBPGR/ICRISAT, 1993. Descriptors for Sorghum (Sorghum bicolor (L.) Moench). International Board for Plant genetic resources, Rome, Italy; International Crops Research Institute for Semi-Arid Tropics, Patancheru, India.Google Scholar
  42. Kebede, Y., 1986. The role of Ethiopian sorghum germplasm resources in the national breeding programme. In: J.M.M, Engels (Ed.), The Conservation and Utilisation of Ethiopian Germplasm, Proceedings of an International Symposium. 13-16 Oct. 1986, pp. 223-230. Addis Ababa, Ethiopia.Google Scholar
  43. Kebede, Y., 1991. The role of Ethiopian sorghum germplasm resources in the national breeding programme. In: J.M.M. Engels, J.G. Hawkes & M. Worede (Eds.), Plant Genetic Resources of Ethiopia, pp. 315-322. Cambridge University Press, Cambridge.Google Scholar
  44. Kebede, Y. & A. Menkir, 1987. Sorghum improvement for the moisture-stress regions of Ethiopia. In: J.M. Menyonga, Taye Bezuneh & A. Youdeowei (Eds.), Food Grain Production in Semi-Arid Africa, pp. 131-139. OAU/STRC-SAFGRAD.Google Scholar
  45. Kwolek, T.F., R.E. Atkins & O.S. Smith, 1986. Comparisons of agronomic characteristics in C0 and C4 of IAP3BR(M) random-mating grain sorghum population. Crop Sci 26: 1127-1131.CrossRefGoogle Scholar
  46. Lothrop, J.E., R.E. Atkins & O.S. Smith, 1985. Variability for yield and yield components in IAR1R grain sorghum random-mating population. II. Correlations, estimated gains from selection, and correlated responses to selection. Crop Sci 25: 240-244.CrossRefGoogle Scholar
  47. Marshall, D.R. & A.H.D. Brown, 1975. Optimum sampling strategies in genetic conservation. In: O.H. Frankel & J.G. Hawkes (Eds.), Crop Genetic Resources for Today and Tomorrow, pp. 53-80. Cambridge Univ. Press, Cambridge.Google Scholar
  48. Mengesha, M.H., 1975. Crop germplasm diversity resources of Ethiopia. In: O.H. Frankel & J.G. Hawkes (Eds.), Crop Genetic Resources for Today and Tomorrow, pp. 449-453. Cambridge Univ. Press, Cambridge.Google Scholar
  49. Moreno-Gonzalez, J. & J.I. Cubero, 1993. Selection strategies and choice of breeding methods. In: M.D. Hayward, N.O. Bosemark & I. Romagosa (Eds.), Plant Breeding, Principles and Prospects, pp. 16-29. Chapman & Hall.Google Scholar
  50. Pecetti, L., P. Annicchiarico & A.B. Damania, 1992. Biodiversity in a germplasm collection of durum wheat. Euphytica 60: 229-238.Google Scholar
  51. Pecetti, L., A.B. Damania, 1996. Geographic variation in tetraploid wheat (Triticum turgidum ssp. turgidum convar. durum) landraces from two provinces in Ethiopia. Genetic Resources and crop Evolution 43: 395-407.Google Scholar
  52. Prasada Rao, K.E. & M.H. Mengesha, 1981. A pointed collection of Zera-zera sorghum in the Gambella area of Ethiopia. Genetic Resources Unit Progress Report No. 33. ICRISAT, Patancheru P.O., A.P., India.Google Scholar
  53. Prasada Rao, K.E., M.H., Mengesha & V.G. Reddy, 1989. International use of a sorghum germplasm collection. In: A.H.D. Brown, D.R. Marshall & O.H. Frankel, J.T. Williams (Eds.), The Use of Plant Genetic Resources, pp. 49-67. Cambridge Univ. Press.Google Scholar
  54. Quinby, J.R., 1967. The maturity genes of sorghum. Adv Agron 19: 267-305.CrossRefGoogle Scholar
  55. Singh, R. & J.D. Axtell, 1973. High lysine mutant gene (hl) that improves protein quality and biological value of grain sorghum. Crop Sci 13: 535-539.CrossRefGoogle Scholar
  56. Singh, R.K. & B.D. Chaudhary, 1985. Biometrical Methods in Quantitative Genetic Analysis, Kalyani Publishers, New Delhi.Google Scholar
  57. Singh, S.P., 1985. Sources of cold tolerance in grain sorghum. Can J Plant Sci 5: 251-257.CrossRefGoogle Scholar
  58. Stemler, A.B.L., J.R. Harlan & J.M.J. de Wet, 1977. The sorghums of Ethiopia. Econ Bot 31: 446-460.Google Scholar
  59. Stickler, F.C., Wearden, S. & A.W. Pauli, 1961. Leaf area determination in sorghum. Agron J 53: 187-188.CrossRefGoogle Scholar
  60. Tato, K., 1964. Rainfall in Ethiopia. Eth Geog J 2: 28-36.Google Scholar
  61. Teshome, A., B.R. Baum, L. Fahrig, J.K. Torrance, T.J. Arnason & J.D. Lambert, 1997. Sorghum (Sorghum bicolor (L.) Moench) landrace variation and classification in North Shewa and South Welo, Ethiopia. Euphytica 97: 255-263.CrossRefGoogle Scholar
  62. Thorpe, R.S., 1976. Biochemical analysis of geographical variation and racial affinities. Biol Rev 51: 407-452.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Amsalu Ayana
    • 1
    • 2
  • Endashaw Bekele
    • 1
  1. 1.Department of Biology, Faculty of ScienceAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.Department of Plant Breeding ResearchThe Swedish University of Agricultural SciencesSvalövSweden

Personalised recommendations