, Volume 424, Issue 1–3, pp 67–77

Cyanoprokaryote assemblages in eight productive tropical Brazilian waters

  • V. L. M. Huszar
  • L. H. S. Silva
  • M. Marinho
  • P. Domingos
  • C. L. Sant'Anna


Cyanoprokaryote assemblages of eight very productive Brazilian lakes are described and the main driving forces of their dominance are considered. Relative abundance of blue-greens is shown to have been positively related to temperature, but not to pH or total-P and to have been negatively associated with light, mixing, NO3, but not with NH4, total N or total N/total P ratio. Both heterocytic and non-heterocytic groups were negatively related to NO3. However, if Cylindrospermopsis species are considered as non-N2-fixing organisms (only 10% of the filaments carried heterocytes), the lakes could be considered as dominated by non-N2-fixing populations during most of the years. In this new scenario, non-N2-fixing were dominant in NO3 (but not NH4) deficient lakes, and in both NO3 and NH4 deficient conditions. Assemblages S, Sn, H, M, X1, as groups of descriptor species of systems having similar features as proposed by Reynolds (1997: Ecology Institute, Oldenburg), were representative of warm, shallow, turbid, enriched and frequently mixed lakes. We propose to move some species from Z (picoplancton of oligotrophic lakes) to X1 assemblage (nanoplankton of eutrophic lakes) and we comment on Microcystis species of M assemblage from mixed shallow lakes in relation to Lm assemblage of end-summer in temperate lakes. S and Sn assemblages, which comprise species which are good-light antennae, were the best represented group in these generally turbid and shallow lakes.

blue-greens (Cyanoprokaryotes) assemblages productive lakes Brazil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Cobelas, M. & B. A. Jacobsen, 1992. Hypertrophic phytoplankton: an overview. Freshwat. Biol. 2: 184–199.Google Scholar
  2. Blomqvist, P., A. Pettersson & P. Hyenstrand, 1994. Ammoniumnitrogen: A key regulatory factor causing dominance of nonnitrogen-fixing Cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141–164.Google Scholar
  3. Branco, C. W. C. & P. A. C. Senna, 1994. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in Paranoá Reservoir, Brasília, Brazil. Algol. Stud., 75: 85–96Google Scholar
  4. Canfield, D. E. Jr, E. Philips & C. M. Duarte, 1989. Factors influencing the abundance of blue-green algae in Florida lakes. Can. J. Fish. aquat. Sci. 46: 1232–1237Google Scholar
  5. Caraco, N & R. Miller, 1998. Direct and indirect effects of CO2 on competition between a cyanobacteria and eukaryotic phytoplankton. Can. J. Fish. aquat. Sci. 55: 54–62.Google Scholar
  6. Carmouze, J. P., C. E. Sampaio & P. Domingos, 1994. Évolution des stocks de matière organique et de nutriments dans une lagune tropicale (Brésil) au cours d'une période marquée par une mortalité de poissons. Rev. Hydrobiol. trop. 27: 217–234.Google Scholar
  7. Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos. Editora Edgard Blücher/FAPESP. São Paulo: 253 pp.Google Scholar
  8. Cole, G. A., 1994. Textbook of Limnology. Waveland Press Inc, Illinois: 491 pp.Google Scholar
  9. Domingos, P. & J. P. Carmouze, 1993. Influences des intrusions de masses d'air polaires sur le phytoplancton et le métabolisme d'une lagune tropicale. Rev. Hydrobiol. trop. 26: 257–267.Google Scholar
  10. Domingos, P., V. L. M. Huszar & J. P. Carmouze, 1994. Composition et biomasse du phytoplancton d'une lagune tropicale (Brésil) au cours d'une période marquée par une mortalité de poissons. Rev. Hydrobiol. trop. 27: 235–250.Google Scholar
  11. Edler, L. (ed.), 1979. Recommendations for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll. (UNESCO, Working Group 11, Baltic Marine Biologists): 38 pp.Google Scholar
  12. Grime, J. P., 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, Chichester.Google Scholar
  13. Ganf, G. G., 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George) Uganda. J. Ecol. 62: 611–629.Google Scholar
  14. Haney, J. F., 1987. Field studies on zooplankton-Cyanobacteria interactions. New Zealand J. mar. Freshwat. Res. 21: 467–475.Google Scholar
  15. Happey-Wood, C. M., 1988. Ecology of freshwater planktonic green algae. In Sandgren, C. D. (ed.), Growth and Survival Strategies of Freshwater Phytoplankton. Cambridge University. Press, Cambridge: 175–226.Google Scholar
  16. Hecky R. & H. J. Kling, 1987. Phytoplankton ecology of the great lakes in the rift valleys of central Africa. Arch. Hydrobiol. 25: 197–228.Google Scholar
  17. Huszar, V. L. M. & N. Caraco, 1998. The relationship between phytoplankton composition and physical-chemical variables: a comparison of taxonomic and morphological-functional approaches in six temperate lakes. Freshwat. Biol. 40: 1–18.Google Scholar
  18. Huszar, V. L.M., L. H. S. Silva, P. Domingos, M. M. Marinho & S. Melo, 1998. Phytoplankton species composition is more sensitive than OECD criteria to the trophic status of three Brazilian tropical lakes. Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 59–71.Google Scholar
  19. Jensen, P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can. J. Fish. aquat. Sci 51: 1692–1699.Google Scholar
  20. Jochimsen, E. M., W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, M. B. C. Antunes, D. A. Melo-Filho, T.M. Lyra, V. S. T. Barreto, S. M. F. O. Azevedo & W. R. Jarvis, 1998. Liver failure and death following exposure to microcystins toxins at a hemodialysis center in Brazil. New Engl. J. Med. 338: 873–88.Google Scholar
  21. King, D. L., 1970. The role of carbon in eutrophication. J. Wat. Pollut. Cont. Fed. 42: 2035–2051.Google Scholar
  22. Lewis Jr., W. M. & W. Riehl, 1982. Phytoplankton composition and morphology in Lake Valencia, Venezuela. Int. Rev. ges. Hydrobiol. 67: 297–322.Google Scholar
  23. Machado, E. C., 1989. Desoxigenação e regeneração de nutrientes na lagoa de Guarapina, Rio de Janeiro. UFF, Niterói. (Dissertation)Google Scholar
  24. McQueen, D. J. & D. R. S. Lean, 1987. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in lake St. George, Ontario. Can. J. Fish. aquat Sci. 44: 598–604.Google Scholar
  25. Menezes, M. & Domingos, P. 1994. Flore planctonique d'une lagune tropicale (Brésil). Rev. Hydrobiol. Trop. 27(3): 273–297.Google Scholar
  26. Nascimento, S. M. & S. M. F. O. Azevedo, 1998. Growth of Synechocystis aquatilis f. salina (blue-green algae) on different nitrogen/phosphorus ratio-ecophysiological approach. Verh. int. Ver. Limnol, 26: 1764–1765.Google Scholar
  27. Nürnberg, G. K., 1996. Trophic state of clear and colored, soft-and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fishes. J. Lakes Res. Manag. 12: 432–447.Google Scholar
  28. OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris: 145 pp.Google Scholar
  29. Olrik, K., 1994. Phytoplankton Ecology. Determining factors for the distribution of phytoplankton in freshwater and the sea. Ministry of the Environment, Denmark: 183 pp.Google Scholar
  30. Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. Suppl. 107, Monogr. Stud.: 563–593.Google Scholar
  31. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.Google Scholar
  32. Paerl, H. W., 1988. Growth and reproductive strategies of freshwater blue-green algae (Cyanobacteria). In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 261–315.Google Scholar
  33. Paranhos, R., 1996. Alguns métodos para análise da água. Cadernos Didáticos UFRJ 19. Rio de Janeiro: 200 pp.Google Scholar
  34. Pettersson, K., E. Herlitz & V. Istvanovics, 1993. The role of Gloeotrichia echinulata in the transfer of phosphorus from sediments to water in lake Erken. Hydrobiologia 253: 123–129.Google Scholar
  35. Présing, M., S. Herodek, L. Vörös & I. Kóbor, 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Arch. Hydrobiol. 136: 553–562.Google Scholar
  36. Ramberg, L., 1987. Phytoplankton succession in the Sanyati basin, Lake Kariba. Hydrobiologia 153: 193–202.Google Scholar
  37. Reynolds, C. S., 1984. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwat. Biol. 14: 111–142.Google Scholar
  38. Reynolds, C. S., 1987. Cyanobacterial water-blooms. In Callow, J. (ed.), Advances in Botanical Research, Vol. 13, Academic Press, London: 67–143.Google Scholar
  39. Reynolds, C. S., 1988. Functional morphology and adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Survival Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.Google Scholar
  40. Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory, Ecology Institute, Germany: 371 pp.Google Scholar
  41. Sant'Anna, C. L., L. Sormus, A. Tucci & M. T. P. Azevedo, 1997. Variação sazonal do fitoplâncton do Lago das Garças, São Paulo, SP. Hoehnea 24: 67–86.Google Scholar
  42. Shapiro, J., 1990 Currents beliefs regarding dominance by bluegreens: the case for the importance of CO2 and pH. Verh. int. Ver. Limnol. 24: 38–54.Google Scholar
  43. Smith, V., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.Google Scholar
  44. Smith, V., 1986. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Can. J. Fish. aquat. Sci. 43: 148–153.Google Scholar
  45. Sommer, U., 1988 Growth and survival strategies of planktonic diatoms. In Sandgren, C. D. (ed.), Growth and Survival Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 227–260.Google Scholar
  46. Tilman, D., R. Kiesling, R. Sterner, S. Kilham & F. A. Johnson, 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.Google Scholar
  47. Trimbee, A. M. & E.E. Prepas, 1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can. J. Fish. aquat. Sci. 44: 1337–1342Google Scholar
  48. Utermöhl, H., 1958 Zur Vervollkomnung der quantitativen Phytoplankton-methodik. Ver. int. Ver. Limnol. 9: 1–38.Google Scholar
  49. Van den Hoek, C., D. G. Mann & H. M. Jahns, 1997. An introduction to Phycology. Cambridge University Press, Cambridge: 627 pp.Google Scholar
  50. Watson, S. B., E. McCauley & J. A. Downing, 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol. Oceanogr. 42: 487–495.Google Scholar
  51. Zevenboom, W. & L. R. Mur, 1980. N2-fixing cyanobacteria: Why they do not become dominant in Dutch, hypertrophic lakes. Dev. Hydrobiol. 2: 123–130.Google Scholar
  52. Zhang, Y. & E. E. Prepas, 1996. Regulation of the dominance of planktonic diatoms and cyanobacteria in four eutrophic hardwater lakes by nutrients, water column stability and temperature. Can. J. Fish. aquat. Sci. 53: 621–633.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • V. L. M. Huszar
    • 1
  • L. H. S. Silva
    • 1
  • M. Marinho
    • 1
  • P. Domingos
    • 1
  • C. L. Sant'Anna
    • 2
  1. 1.1Laboratório de Ficologia, Departamento de Botânica, Museu NacionalUniversidade Federal do Rio de Janeiro, Quinta da Boa Vista, São CristóvãoRio de JaneiroBrazil
  2. 2.2Secção de FicologiaInstituto de BotânicaSão PauloBrazil

Personalised recommendations