Genetica

, Volume 107, Issue 1–3, pp 239–248

Sectorial mutagenesis by transposable elements

  • Jerzy Jurka
  • Vladimir V. Kapitonov
Article

Abstract

Transposable elements (TEs) generate insertions and cause other mutations in the genomic DNA. It is proposed that during co-evolution between TEs and eukaryotic genomes, an optimal path of the insertion mutagenesis is determined by the surviving TEs. These TEs can become semi-permanently established, chromatin-regulated ‘source’ or ‘mutator genes’, responsible for targeting insertion mutations to specific chromosomal regions. Such mutations can manifest themselves in non-random distribution patterns of interspersed repeats in eukaryotic chromosomes. In this paper we discuss specific models, examples and implications of optimized mutagenesis in eukaryotes.

transposable elements repetitive DNA mutagenesis chromosomal evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A., Q.M. Eastman & D.G. Schatz, 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.PubMedCrossRefGoogle Scholar
  2. Bernardi, G., 1989. The isochore organization of the human genome. Annu. Rev. Genet. 23: 637–661.PubMedCrossRefGoogle Scholar
  3. Bernardi, G., 1995. The human genome: organization and evolutionary history. Annu. Rev. Genet. 29: 445–476.PubMedCrossRefGoogle Scholar
  4. Bird, A., 1997. Does DNA methylation control transposition of selfish elements in germline? Trends Genet. 13: 469–470.PubMedCrossRefGoogle Scholar
  5. Boyle, A.L., S.G. Ballard & D.C. Ward, 1990. Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 87: 7757–7761.PubMedCrossRefGoogle Scholar
  6. Britten, R.J., W.F. Baron, D.B. Stout & E.H. Davidson, 1988, Sources and evolution of human Alu repeated sequences. Proc. Natl. Acad. Sci. USA 85: 4770–4774.PubMedCrossRefGoogle Scholar
  7. Chen, T.L. & L. Manuelidis, 1989. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98: 309–316.PubMedCrossRefGoogle Scholar
  8. Cherry, S.R. & D. Baltimore, 1999. Chromatin remodeling directly activates V(D)J recombination. Proc. Natl. Acad. Sci. USA 96: 10788–10793.PubMedCrossRefGoogle Scholar
  9. Craig, J.M. & W.A. Bickmore, 1997. The relationship between gene density and chromosome banding patterns in mammalian nuclei, pp. 65–83 in Chromosomes Today, edited by N. Henriques-Gil, J. S. Parker and M. J. Puertas. Chapman & Hall, London, UK.Google Scholar
  10. de Souza, S.J., M. Long, R.J. Klein, S. Roy, S. Lin et al., 1998. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. Proc. Natl. Acad. Sci. USA 95: 5094–5099.PubMedCrossRefGoogle Scholar
  11. Deininger, P.L. & M.A. Batzer, 1999 Alu repeats and human disease. Mol. Genet. Metab. 67: 183–193.PubMedCrossRefGoogle Scholar
  12. Dhellin, O., J. Maestre & T. Heidmann, 1997. Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo reverse transcription. EMBO J. 16: 6590–6602.PubMedCrossRefGoogle Scholar
  13. Dimitri, P., 1997. Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100: 85–93.PubMedCrossRefGoogle Scholar
  14. Donovan, G.P., C. Harden, J. Gal, L. Ho, E. Sibille et al., 1997. Sensitivity to jerky gene dosage underlies epileptic seizures in mice. J. Neurosci. 17: 4562–4569.PubMedGoogle Scholar
  15. Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.PubMedCrossRefGoogle Scholar
  16. Duret, L., D. Mouchiroud & C. Gautier, 1995. Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J. Mol. Evol. 40: 308–317.PubMedCrossRefGoogle Scholar
  17. Halverson, D., M. Baum, J. Stryker, J. Carbon & L. Clarke, 1997. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J. Cell Biol. 136: 487–500.PubMedCrossRefGoogle Scholar
  18. Hartl, D.L., E.R. Lozovskaya, D.I. Nurminsky & A.R. Lohe, 1997. What restricts the activity of mariner-like transposable elements? Trends Genet. 13: 197–201.PubMedCrossRefGoogle Scholar
  19. Hiom, K., M. Melek & M. Gellert, 1998. DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations. Cell 94: 463–470.PubMedCrossRefGoogle Scholar
  20. Holmquist, G.P., 1992. Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 51: 17–37.PubMedGoogle Scholar
  21. Hu, X. & R.G. Worton, 1992. Partial gene duplication as a cause of human disease. Hum. Mutat. 1: 3–12.PubMedCrossRefGoogle Scholar
  22. Jabbari, K. & G. Bernardi, 1998. CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. Gene 224: 123–128.PubMedCrossRefGoogle Scholar
  23. Jackson, D.A., 1997. Chromatin domains and nuclear compartments: establishing sites of gene expression in eukaryotic nuclei. Mol. Biol. Rep. 24: 209–220.PubMedCrossRefGoogle Scholar
  24. Jensen, S., M.P. Gassama & T. Heidmann, 1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21: 209–212.PubMedCrossRefGoogle Scholar
  25. Jurka, J., 1989. Subfamily structure and evolution of the human L1 family of repetitive sequences. J. Mol. Evol. 29: 496–503.PubMedGoogle Scholar
  26. Jurka, J., 1995. Origin and evolution of Alu repetitive elements, pp. 25–41 in The Impact of Short Interspersed Elements (SINEs) on the Host genome, edited by R.J. Maraia. R.G. Landes Company, Austin.Google Scholar
  27. Jurka, J., 1997 Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl. Acad. Sci. USA 94: 1872–1877.PubMedCrossRefGoogle Scholar
  28. Jurka, J., 1998. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 8: 333–337.PubMedCrossRefGoogle Scholar
  29. Jurka, J. & A. Milosavljevic, 1991, Reconstruction and analysis of human Alu genes. J. Mol. Evol. 32: 105–121.PubMedGoogle Scholar
  30. Jurka, J. & T. Smith, 1988. A fundamental division in the Alu family of repeated sequences. Proc. Natl. Acad. Sci. USA 85: 4775–4778.PubMedCrossRefGoogle Scholar
  31. Jurka, J., E. Zietkiewicz & D. Labuda, 1995. Ubiquitous mammalian interspersed repeats (MIRs) are molecular fossils from the Mesozoic era. Nucl. Acids Res. 23: 170–175.PubMedGoogle Scholar
  32. Jurka, J., V.V. Kapitonov, P. Klonowski, J. Walichiewicz & A.F.A. Smit, 1996. Identification of new medium reiteration frequency repeats in the genomes of primates, rodentia and lagomorpha. Genetica 98: 235–247.PubMedCrossRefGoogle Scholar
  33. Kapitonov, V.V. & J. Jurka, 1996 The age of Alu subfamilies. J. Mol. Evol. 42: 59–65.PubMedCrossRefGoogle Scholar
  34. Kapitonov, V. & J. Jurka, 1998. MER53, a non-autonomous DNA transposon associated with a variety of functionally related defense genes in the human genome. DNA Sequence 8: 277–288.PubMedCrossRefGoogle Scholar
  35. Kaplan, N., T. Darden & C.H. Langley, 1985. Evolution and extinction of transposable elements in Mendelian populations. Genetics 109: 459–480.PubMedGoogle Scholar
  36. Kazazian, H.H. Jr. & J.V. Moran, 1998. The impact of L1 retrotransposons on the human genome. Nat. Genet. 19: 19–24.PubMedGoogle Scholar
  37. Kidwell, M.G. & D. Lisch, 1997. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94: 7704–7711.PubMedCrossRefGoogle Scholar
  38. Kipling, D. & P.E. Warburton, 1997. Centromeres, CENP-B and Tigger too. Trends Genet. 13: 141–145.PubMedCrossRefGoogle Scholar
  39. Korenberg, J.R. & M.C. Rykowski, 1988. Human genome organization: Alu, Lines and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.PubMedCrossRefGoogle Scholar
  40. Kumar, S., K. Tamamura & M. Nei, 1994. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput. Appl. Biosci. 10: 189–191.PubMedGoogle Scholar
  41. Labrador, M. & V.G. Corces, 1997. Transposable element-host interactions: regulation of insertion and excision. Ann. Rev. Biochem. 31: 381–404.Google Scholar
  42. Lewis, S.M., 1999. Evolution of immunoglobulin and T-cell receptor gene assembly. Ann. N Y Acad. Sci. 870: 58–67.PubMedCrossRefGoogle Scholar
  43. Ligner, J., T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad et al., 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.CrossRefGoogle Scholar
  44. Logsdon, J.M., Jr. & J.D. Palmer, 1994. Origin of introns — early or late? Nature 369: 526.PubMedCrossRefGoogle Scholar
  45. Malick, H.S., W.D. Burke & T.H. Eickbush, 1999. The age and evolution of non-LTR retrotranposable elements. Mol. Biol. Evol. 16: 793–805.Google Scholar
  46. Manuelidis, L. & D.C. Ward, 1984. Chromosomal and nuclear distribution of the 1.9-kb human DNA repeat segment. Chromosoma 91: 28–38.PubMedCrossRefGoogle Scholar
  47. Matassi, G., D. Labuda & G. Bernardi, 1998. Distribution of mammalian-wide interspersed repeats (MIRs) in the isochores of the human genome. FEBS Lett. 439: 63–65.PubMedCrossRefGoogle Scholar
  48. Matzke, M.A. & A.J. Matzke, 1998. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell. Mol. Life Sci. 54: 94–103.PubMedCrossRefGoogle Scholar
  49. McDonald, J.F., 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Dev. 3: 855–864.PubMedCrossRefGoogle Scholar
  50. McDonald, J.F., 1995. Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10: 123–126.CrossRefGoogle Scholar
  51. Miki, Y., 1998. Retrotransposal integration of mobile genetic elements in human diseases. J. Hum. Genet. 43: 77–84.PubMedCrossRefGoogle Scholar
  52. Nakamura, T.M., B.M. Gregg, K.B. Chapman, S.L. Weinrich, W.H. Andrews et al., 1997. Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959.PubMedCrossRefGoogle Scholar
  53. Okada, N., M. Hamada, I. Ogiwara & K. Ohshima, 1997. SINEs and LINEs share common 3′ sequences: a review. Gene 205: 229–243.PubMedCrossRefGoogle Scholar
  54. Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.PubMedCrossRefGoogle Scholar
  55. Pardue, M.L., O.N. Danilevskaya, K.L. Traverse & K. Lowenhaupt, 1997. Evolutionary links between telomeres and transposable elements. Genetica 100: 73–84.PubMedCrossRefGoogle Scholar
  56. Pirrotta, V. & L. Rastelli, 1994. White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays 16: 549–556.PubMedCrossRefGoogle Scholar
  57. Robertson, H.M., 1996. Members of pogo superfamily of DNA-mediated transposons in the human genome. Mol. Gen. Genet. 252: 761–766.PubMedCrossRefGoogle Scholar
  58. Roger, A.J., P.J. Keeling & W.F. Doolittle, 1994. Introns, the broken transposons. Soc. Gen. Physiol. Ser. 49: 27–37.PubMedGoogle Scholar
  59. Roth, D.B. & N.L. Craig, 1998. VDJ Recombination: A transposase goes to work. Cell 94: 411–414.PubMedCrossRefGoogle Scholar
  60. Schmid, C.W., 1998. Does SINE evolution preclude Alu function? Nucl. Acids Res. 26: 4541–4550.PubMedCrossRefGoogle Scholar
  61. Shapiro, J.A., 1999. Genome system architecture and natural genetic engineering in evolution. Ann. N. Y. Acad. Sci. 870: 23–35.PubMedCrossRefGoogle Scholar
  62. Smit, A.F.A., 1996. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6: 743–748.PubMedCrossRefGoogle Scholar
  63. Smit, A.F.A. & A.D. Riggs, 1996. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.PubMedCrossRefGoogle Scholar
  64. Smit, A.F.A., G. Toth, A.D. Riggs & J. Jurka, 1995. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 246: 401–417.PubMedCrossRefGoogle Scholar
  65. Soriano, P., M. Meunier-Rotival & G. Bernardi, 1983. The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 80: 1816–1820.PubMedCrossRefGoogle Scholar
  66. Stoltzfus, A., D.F. Spencer, M. Zuker, J.M. Logsdon, Jr. & W.F. Doolittle, 1994. Testing the exon theory of genes:the evidence from protein structure. Science 265: 202–207.PubMedGoogle Scholar
  67. Surzycki, S.A. & W.R. Belknap, 2000. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans chromosomes. Proc. Natl. Acad. Sci. USA 97: 245–249.PubMedCrossRefGoogle Scholar
  68. Szmulewicz, M.N., G.E. Novick & R.J. Herrera, 1998. Effects of Alu insertions on gene function. Electrophoresis 19: 1260–1264.PubMedCrossRefGoogle Scholar
  69. Thompson, J.D., D.G. Higgins & T.J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.PubMedGoogle Scholar
  70. Toth, M., J. Grimsby, G. Buzsaki & G.P. Donovan, 1995. Epileptic seizures caused by inactivation of a novel gene, jerky, related to centromere binding protein-B in transgenic mice. Nat. Genet. 11: 71–75.PubMedCrossRefGoogle Scholar
  71. von Sternberg, R.M., G.E. Novick, G.-P. Gao & R.J. Herrera, 1992. Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 86: 215–246.PubMedCrossRefGoogle Scholar
  72. von Sternberg, R., 1996. The role of constrained self-organization in genome structural evolution. Acta Biotheoretica 44: 95–118.PubMedCrossRefGoogle Scholar
  73. Wichman, H.A., R.A. Van den Bussche, M.J. Hamilton & R.J. Baker, 1992. Transposable elements and the evolution of genome organization in mammals. Genetica 86: 287–293.PubMedCrossRefGoogle Scholar
  74. Wilson, R.K. et al., 1999. How the worm was won. The C. elegans genome sequencing project. Trends Genet. 15: 51–58.PubMedCrossRefGoogle Scholar
  75. Woese, C., 1998. The universal ancestor. Proc. Natl. Acad. Sci. USA 95: 6854–6859.PubMedCrossRefGoogle Scholar
  76. Yang, A.S., M.L. Gonzalgo, J.M. Zingg, R.P. Millar, J.D. Buckley et al., 1996. The rate of CpG mutation in Alu repetitive elements within the p53 tumor suppressor gene in the primate germline. J. Mol. Biol. 258: 240–250.PubMedCrossRefGoogle Scholar
  77. Yoder, J.A., C.P. Walsh & T.H. Bestor, 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335–340.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jerzy Jurka
    • 1
  • Vladimir V. Kapitonov
    • 1
  1. 1.Genetic Information Research InstituteSunnyvaleUSA

Personalised recommendations