Journal of Applied Electrochemistry

, Volume 30, Issue 4, pp 429–437 | Cite as

Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel

  • P. Nowak
  • R.P. Socha
  • M. Kaisheva
  • J. Fransaer
  • J.-P. Celis
  • Z. Stoinov

Abstract

The use of electrochemical impedance spectroscopy (EIS) for the in situ control of the electrolytic codeposition of Ni/SiO2 and Ni/SiC was investigated. An attempt was made to clarify why silica particles hardly codeposit in comparison to silicon carbide particles. It was found that the presence of SiO2 and SiC particles influences the metal deposition process in different ways. SiC particles that are being embedded in the growing metal layer cause an apparent decrease in the electrode surface area, probably due to blocking off a part of the surface by partly engulfed particles. In the case of SiO2 particles, which embed in the metal matrix to a very limited extent, no blocking was observed. It was found that the presence of particles in the solution causes an apparent increase in the electrode surface area, probably due to increased surface roughness.

composite coatings electrochemical impedance spectroscopy nickel electrodeposition particle codeposition silicon carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Withers and E.F. Abrams, Plating 55 (1968) 605.Google Scholar
  2. 2.
    T.W. Tomaszewski, L.C. Tomaszewski and H. Brown, Plating 56 (1969) 1234.Google Scholar
  3. 3.
    C. Buelens, J. Fransaer, J.-P. Celis and J.R. Roos, Bull. Electrochem. 8 (1992) 371.Google Scholar
  4. 4.
    E.P. Rajiv and S.K. Seshadri, Bull. Electrochem. 8 (1992) 376.Google Scholar
  5. 5.
    R.S. Saifullin, ‘Electrochemical Composite Coatings’ (Khimiya, Moscow, 1972).Google Scholar
  6. 6.
    R.S. Saifullin, Zh. Prikl. Khimi 39 (1966) 810.Google Scholar
  7. 7.
    K. Helle, Proceedings 4th International Conferenc on ‘Org. Coating Sci. and Technol.’ 2 (1982) p. 264.Google Scholar
  8. 8.
    A. Hovestad and L.J.J. Janssen, J. Appl. Electrochem. 25 (1995) 519.Google Scholar
  9. 9.
    W. Metzger, R. Ott, G. Laux and H. Harst, Galvanotechnik 61 (1970) 998.Google Scholar
  10. 10.
    J.C. Withers, Prod. Fin. 8 (1962).Google Scholar
  11. 11.
    P.W. Martin, Met. Finish. J. 11 (1965) 399.Google Scholar
  12. 12.
    D.W. Snaith and P.D. Groves, Trans. Inst. Metal. Finish. 50 (1972) 95.Google Scholar
  13. 13.
    T.W. Tomaszewski, Trans. Inst. Met. Finish. 54 (1976) 45.Google Scholar
  14. 14.
    N. Guglielmi, J. Electrochem. Soc. 119 (1972) 1009.Google Scholar
  15. 15.
    J. Foster and A.M.J. Kariapper, Trans. Inst. Met. Finish. 51 (1973) 27.Google Scholar
  16. 16.
    J.M. Sykes and D.A. Alnert, Trans. Inst. Met. Finish. 51 (1973) 171.Google Scholar
  17. 17.
    A.M.J. Kariapper and J. Foster, Trans. Inst. Met. Finish. 52 (1974) 87.Google Scholar
  18. 18.
    M.J. Bhagwat, J.-P. Celis and J.R. Roos, Trans. Inst. Met. Finish. 61 (1983) 72.Google Scholar
  19. 19.
    R.S. Saifullin, R.N. Salakhiev and R.S. Kuramshin, Kolloidn. Zh. 50 (1988) 293.Google Scholar
  20. 20.
    B. Szczygiel, Trans. Inst. Met. Finish. 73 (1995) 142.Google Scholar
  21. 21.
    J.-P. Celis, J.R. Roos and C. Buelens, J. Electrochem. Soc. 134 (1987) 1402.Google Scholar
  22. 22.
    J. Fransaer, J.-P. Celis and J.R. Roos, J. Electrochem. Soc. 139 (1992) 413.Google Scholar
  23. 23.
    V.E. Shubin and P. Kékicheff, J. Colloid. Interface Sci. 155 (1993) 108.Google Scholar
  24. 25.
    S.W. Watson and R.P. Walters, J. Electrochem. Soc. 138 (1991) 3633.Google Scholar
  25. 26.
    S.W. Watson, J. Electrochem. Soc. 140 (1993) 2235.Google Scholar
  26. 27.
    S.H. Yeh and C.C. Wan, J. Appl. Electrochem. 24 (1994) 993.Google Scholar
  27. 28.
    A.J. Arvia and D. Posadas, in ‘Encyclopedia of Electrochemistry of the Elements’, edited by A.J. Bard, Vol. 3 (Marcel Dekker, New York, 1975).Google Scholar
  28. 29.
    I. Epelboin, M. Joussellin and R. Wiart, J. Electroanal. Chem. 119 (1981) 61.Google Scholar
  29. 30.
    E. Chassaing, K. Vu Quang and R. Wiart, J. Appl. Electrochem. 17 (1987) 1267 and 19 (1989) 839.Google Scholar
  30. 31.
    E. Chassaing and R. Wiart, J. Electrochem. Soc. 118 (1971) 1577.Google Scholar
  31. 32.
    O. Volk and H. Fisher, Electrochim. Acta 4 (1961) 251.Google Scholar
  32. 33.
    S.S. Krugliakov, N.T. Kudryavtsev and R.P. Sobolev, Electrochim. Acta 12 (1967) 1263.Google Scholar
  33. 34.
    L. Benea and G. Carac, Cercet. Metal. Noi. Mater. 5 (1997) 20.Google Scholar
  34. 35.
    G. Maurin and A. Lavanant, J. Appl. Electrochem. 25 (1995) 1113.Google Scholar
  35. 36.
    B. Szeptycka, Inz. Powierzchni 4 (1997) 45.Google Scholar
  36. 37.
    M. Kimoto, A. Yakawa, T. Tsuda and R. Kammel, Metall. 44 (1990) 1148.Google Scholar
  37. 38.
    M. Ramasubramanian, S.N. Popova, B.N. Popov, R.E. White and K.-M. Yin, J. Electrochem. Soc. 143 (1996) 2164.Google Scholar
  38. 39.
    R.S. Saifullin, R.E. Fomina and A.R. Saifullin, Zashch. Met. 4 (1986) 611.Google Scholar
  39. 40.
    D. Aslanidis, J. Fransaer and J.-P. Celis, J. Electrochem. Soc. 144 (1997) 2352.Google Scholar
  40. 41.
    Y. Shiohara, A. Okado, M. Abe and M. Sagiyama, Tetsu-to-Hagane 77 (1991) 878.Google Scholar
  41. 42.
    C. Dedeloudis, M.K. Kaisheva, N. Muleshkov, T. Muleshkov, P. Nowak, J. Fransaer and J.P. Celis, Plat. Surf. Finish., 86(8) (1999) 57.Google Scholar
  42. 43.
    J. Newman, J. Electrochem. Soc. 113 (1966) 501.Google Scholar
  43. 44.
    Chu-nan Cao, Electrochim. Acta 35 (1990) 831 and 35 (1990) 837.Google Scholar
  44. 45.
    L. Nyikos and T. Pajkossy, Electrochim. Acta 30 (1985) 1553.Google Scholar
  45. 46.
    G.J. Brug, A.L.G. Van den Eeden, M. Sluyters-Rehbach and J.H. Sluyters, J. Electroanal. Chem. 176 (1984) 275.Google Scholar
  46. 47.
    CERN Computer Centre Program Library, D506.Google Scholar
  47. 48.
    G.N.K. Ramesh Babu, V.S. Muralidharan and F. Rodriguez-Reinoso, Plat. Surf. Finish. 78 (1991) 126.Google Scholar
  48. 49.
    T. Pajkossy, J. Electroanal. Chem. 364 (1994) 111.Google Scholar
  49. 50.
    J. Newman, J. Electrochem. Soc. 117 (1970) 198.Google Scholar
  50. 51.
    M.A. Vorotyntsev, in ‘Modern Aspects of Electrochemistry’ Vol. 17, edited by, B.E. Conway, R.E. White and J.O'M. Bockris (Plenum, New York, 1986), p. 131.Google Scholar
  51. 52.
    G.A. Parks, Chem. Rev. 65 (1965) 177.Google Scholar
  52. 53.
    J. Drzymaøa, Int. J. Mineral Process. 42 (1994) 139 and 42 (1994) 153.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Nowak
    • 1
  • R.P. Socha
    • 1
  • M. Kaisheva
    • 2
  • J. Fransaer
    • 3
  • J.-P. Celis
    • 3
  • Z. Stoinov
    • 4
  1. 1.Institute of Catalysis and Surface ChemistryPolish Academy of SciencesKrakówPoland
  2. 2.Faculty of Chemistry, Department of Physical ChemistryUniversity of SofiaSofiaBulgaria
  3. 3.Department of Metallurgy and Materials EngineeringKatholieke Universiteit LeuvenHeverleeBelgium
  4. 4.Central Laboratory of Electric Power SourcesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations