Advertisement

Hydrobiologia

, Volume 420, Issue 1, pp 55–62 | Cite as

An overview of marine fish cytogenetics

  • P. M. GalettiJr.
  • C. T. Aguilar
  • W. F. Molina
Article

Abstract

The number of cytogenetic studies of marine fish has increased in recent years. Fish groups, such as Perciformes, which comprises many of the extant marine teleosts of economic importance, show little divergence in chromosome number and most species display a diploid number of 48 acrocentric chromosomes. In the Serranidae, Sparidae, Sciaenidae (Perciformes) and Mugilidae (Mugiliformes) small chromosome variations are restricted to subtle heterochromatin or nucleolar organizer region (NOR) modifications. There appears to exist a strict relationship between both absence of geographic barriers throughout the marine environment and high mobility of these animals (eggs, larvae, or adults), with a rarity of chromosome rearrangement at the macrostructural level. Moreover, a cellular homeostasis might also be important to karyotype maintenance among these fishes, limiting changes in the chromosome complement to cryptic chromosome rearrangements. Other groups, such as Blenniidae, Gobiidae and Scorpaenidae, for instance, show more extensive chromosome diversity, which is probably related to limited mobility. Numerical and structural chromosome polymorphisms and several sexual chromosome systems are recurrent among these fishes. A wide karyotypic diversification also characterizes the Tetraodontiformes, an interesting fish group with peculiar morphological, physiological and ecological characteristics.

chromosomes evolution nucleolar organizer region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, C. T. & P. M. Galetti Jr., 1997. Chromosomal studies in South Atlantic serranids (Pisces, Perciformes). Cytobios 89: 105–114.Google Scholar
  2. Almeida-Toledo, L. F., F. Foresti & S. A. Toledo-Filho, 1988. An early stage of sex chromosome differentiation in the fish Eigenmannia virescens (Sternopygidae). Genome 30: 258.Google Scholar
  3. Alvarez, M. C., J. Cano & G. Thode, 1980. DNA content and chromosome complement of Chromis chromis (Pomacentridae, Perciformes). Caryologia 33: 267–274.Google Scholar
  4. Alvarez, M. C., E. Garcia & G. Thode, 1986. Contribution to the karyoevolutive study of the Labridae (Perciformes). The karyotypes of Ctenolabrus rupestris and Symphodus ocellatus. Caryologia 39: 353–357.Google Scholar
  5. Amores, A., J. Bejar & M. C. Alvarez, 1995. Replication, C and Ag-NOR chromosome-banding in two anguilliform fish species. Mar. Biol. 123: 845–849.Google Scholar
  6. Amores, A., V. Giles, G. Thode & M. C. Alvarez, 1990. Adaptive character of a Robertsonian fusion in chromosomes of the fish Gobius paganellus (Pisces, Perciformes). Heredity 65: 151–155.Google Scholar
  7. Andreata, A. A., L. F. Almeida-Toledo, C. Oliveira & S. A. Toledo-Filho, 1992. Chromosome studies in Hypoptopomatinae (Pisces, Siluriformes, Loricariidae). I. XX/XY sex chromosome heteromorphism in Pseudotocinclus tietensis. Cytologia 57: 369–372.Google Scholar
  8. Andreata, A. A., L. F. Almeida-Toledo, C. Oliveira & S. A. Toledo-Filho, 1993. Chromosome studies in Hypoptopomatinae (Pisces, Siluriformes, Loricariidae). II. ZZ/ZWsex-chromosome system, B chromosomes and constitutive heterochromatin differentiation in Microlepidogaster leucofrenatus. Cytogenet. Cell Genet. 63: 215–220.Google Scholar
  9. Arai, R., 1983. Karyological and osteological approach to phylogenetic systematics of tetraodontiform fishes. Bull. natnl. Sci. Mus., Tokyo 9A: 175–210.Google Scholar
  10. Arai, R. & K. Nagaiwa, 1976. Chromosomes of tetraodontiform fishes from Japan. Bull. natnl. Sci. Mus., Tokyo 2A: 59–72.Google Scholar
  11. Arefjev, V. A., 1991. Different rate in intrapopulation chromosome polymorphism in two species of Black Sea Blennius (Blenniidae, Pisces). Genetica 83: 181–187.Google Scholar
  12. Asahida, T. & H. Ida, 1989. Karyological notes on four sharks in the order Carcharhiniformes. Jap. J. Ichthyol. 36: 275–280.Google Scholar
  13. Asahida, T., H. Ida & K. Hayashizaki, 1995. Karyotypes and cellular DNA contents of some sharks in the Order Carcharhiniformes. Jap. J. Ichthyol. 42: 21–26.Google Scholar
  14. Asahida, T., H. Ida & S. Inoue, 1987. Karyotypes of three rays in the Order Myliobatiformes. Jap. J. Ichthyol. 33: 426–430.Google Scholar
  15. Brum, M. J. I., 1996. Cytogenetic studies of Brazilian marine fish. Braz. J. Genet. 19: 421–427.Google Scholar
  16. Brum, M. J. I., M. M. O. Corrêa, C. C. Oliveira & P. M. Galetti Jr., 1995a. Cytogenetic studies on the Perciformes Orthopristis ruber (Haemulidae) and Scartella cristata (Blenniidae). Caryologia 48: 309–318.Google Scholar
  17. Brum, M. J. I. & P. M. Galetti Jr., 1997. Teleostei ground plan karyotype. J. Comp. Biol. 2: 91–102.Google Scholar
  18. Brum, M. J. I., P. M. Galetti Jr., M. M. O. Corrêa & C. T. Aguilar, 1992. Multiple sex chromosomes in South Atlantic fish, Brevoortia aurea, Clupeidae. Braz. J. Genet. 15: 547–553.Google Scholar
  19. Brum, M. J. I., C. C. Oliveira & P. M. Galetti Jr., 1995b. Cytogenetic studies of two puffer species (Sphoeroides, Tetraodontidae) from Rio de Janeiro coast, Brazil. Cytologia 60: 369–374.Google Scholar
  20. Cano, J., M. C. Alvarez, G. Thode & E. Muñoz, 1982. Phylogenetic interpretation of chromosomal and nuclear-DNA-content data in the genus Blennius (Blenniidae: Perciformes). Genetica 58: 11–16.Google Scholar
  21. Cano, J., A. Pretel, S. Melendez, F. Garcia, V. Caputo, A. S. Fenocchio & L. A. C. Bertollo, 1996. Determination of early stages of sex chromosome differentiation in the sea bass Dicentrarchus labrax L. (Pisces: Perciformes). Cytobios 87: 45–59.Google Scholar
  22. Cano, J., G. Thode & M. C. Alvarez, 1981. Analisis cariologico de seis especies de esparidos del Mediterraneo. Genét. Ibérica 33: 181–188.Google Scholar
  23. Caputo, V., F. Marchegiani & E. Olmo, 1996b. Karyotype differentiation between two species of carangid fishes, genus Trachurus (Perciformes: Carangidae). Mar. Biol. 127: 193–199.Google Scholar
  24. Caputo, V., F. Marchegiani, M. Sorice & E. Olmo, 1997. Heterochromatin heterogeneity and chromosome variability in four species of gobiid fishes (Perciformes: Gobiidae). Cytogenet. Cell Genet. 79: 266–271.Google Scholar
  25. Caputo, V., M. Sorice, R. Vitturi, H. Magistrelli & E. Olmo, 1998. Cytogenetic studies in some species of Scorpaeniformes (Teleostei: Percomorpha). Chrom. Res. 6: 255–262.Google Scholar
  26. Carbone, P., R. Vitturi, E. Catalano & M. Macaluso, 1987. Chromosome sex determination and Y-autosome fusion in Blennius tentacularis Brunnich, 1765 (Pisces, Blenniidae). J. Fish Biol. 31: 597–602.Google Scholar
  27. Caputo, V., R. Vitturi, G. Odierna, J. Cano, E. Olmo & M. S. Colomba, 1996a. Characterization of mitotic chromosomes in the gobiid fish Zosterisessor ophiocephalus (Pallas, 1811) (Perciformes, Gobiidae). Biol. Zent. Bl. 115: 328–336.Google Scholar
  28. Castro, J., S. Rodríguez., J Arias & L. Sánchez, 1994. A population analysis of Robertsonian and Ag-NOR polymorphisms in brown trout (Salmo trutta). Theor. appl. Genet. 89: 105–111.Google Scholar
  29. Cataudella, S. & E. Capanna, 1973. Chromosome complements of three species of Mugilidae (Pisces, Perciformes). Experientia 29: 489–492.Google Scholar
  30. Cataudella, S. & M. V. Civitelli, 1975. Cytotaxonomical consideration on the genus Blennius (Pisces, Perciformes). Experientia 31: 167–169.Google Scholar
  31. Cataudella, S., M. V. Civitelli & E. Capanna, 1973. The chromosomes of some Mediterranean teleosts: Scorpaenidae, Serranidae, Labridae, Blenniidae, Gobiidae (Pisces-Scorpaeniformes, Perciformes). Boll. Zool. 40: 385–389.Google Scholar
  32. Choudhury, R. C., R. Prasad & C. C. Das, 1982. Karyological studies in five tetraodontiform fishes from the Indian Ocean. Copeia 1982: 728–732.Google Scholar
  33. Corrêa, M. M. O., 1995. Contribuição à citotaxonomia dos Scorpaeniformes (Osteichthyes-Teleostei): Estudos Citognéticos em espécies do litoral do Rio de Janeiro, Brasil. Unpublished M.Sc. thesis, Federal University of Rio de Janeiro, Brazil.Google Scholar
  34. Corrêa, M. M. O. & P. M. Galetti Jr., 1997. Chromosomal diversity in Scorpaenidae (Teleostei, Scorpaeniformes): Cytogenetic studies in Scorpaena brasiliensis and Scorpaena isthmensis from the coast of Rio de Janeiro, Brazil. Cytologia 62: 397–404.Google Scholar
  35. Crosetti, D., W. S. Nelson & J. C. Avise, 1994. Pronounced genetic structure of mitochondrial DNA among populations of the circumglobally distributed grey mullet (Mugil cephalus). J. Fish. Biol. 44: 47–58.Google Scholar
  36. Dingerkus, G. & W. M. Howell, 1976. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 194: 842–844.Google Scholar
  37. Ewulonu, U.K., R. Haas & B. J. Turner, 1985. A multiple sex chromosome system in the annual killifish, Nothobranchius ghentheri. Copeia 1985: 503–508.Google Scholar
  38. Fontana, F., R. Rossi, M. Lanfredi, G. Arlati & P. Bronzi, 1997. Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50: 91–95.Google Scholar
  39. Galetti Jr., P.M. & F. Foresti, 1986. Evolution of the ZZ/ZW system in Leporinus (Pisces, Anostomidae). Role of constitutive heterochromatin. Cytogenet. Cell Genet. 43: 43–46.Google Scholar
  40. Garcia, E., M. C. Alvarez & G. Thode, 1987. Chromosome relationships in the genus Blennius (Blenniidae, Perciformes). Cbanding patterns suggest two karyoevolution pathways. Genetica 72: 27–36.Google Scholar
  41. Giles, V., G. Thode & M. C. Alvarez, 1985. A new Robertsonian fusion in the multiple chromosome polymorphism of a Mediterranean population of Gobius paganellus (Gobiidae, Perciformes). Heredity 55: 255–260.Google Scholar
  42. Gomes, V., V. N. Phan, & M. J. A. C. Passo, 1994. Karyotypes of three species of marine catfishes from Brazil. Bolm. Inst. oceanogr. USP 42: 55–61.Google Scholar
  43. Haaf, T. & M. Schmid, 1984. An early stage of ZW/ZZ sex chromosome differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes). Chromosoma 89: 37–41.Google Scholar
  44. Hartley, S. E. & M. T. Horne, 1982. Chromosome polymorphism in the rainbow trout (Salmo gairdneri Richardson). Chromosoma 87: 461–468.Google Scholar
  45. Hinegardner, R. & D. E. Rosen, 1972. Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 106: 621–644.Google Scholar
  46. Klinkhardt, M. B., 1992. Chromosome structures of four Norwegian gobies (Gobiidae, Teleostei) and a hypothetical model of their karyo-evolution. Chromatin 1: 169–183.Google Scholar
  47. Klinkhardt, M. B., 1994. Karyotypic divergence between species of Gadidae (Pisces, Gadiformes). Cytobios 77: 207–214.Google Scholar
  48. Klinkhardt, M. B., M. Tesche & H. Greven, 1995. Database of fish chromosomes. Westarp Wissenschaften, Magdeburg.Google Scholar
  49. Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33: 234–251.Google Scholar
  50. LeGrande, W. H., 1981. Chromosomal evolution in North American catfishes (Siluriformes: Ictaluridae) with particular emphasis on the madtoms, Noturus. Copeia 1981: 33–52.Google Scholar
  51. LeGrande, W. H. & J. M. Fitzsimons, 1988. Chromosome numbers of some gulf coast sciaenid fishes. Copeia 1988: 491–493.Google Scholar
  52. Martinez, G., G. Thode, M. C. Alvarez & J. R. López, 1989. C-banding and Ag-NOR reveal heterogeneity among karyotypes of serranids (Perciformes). Cytobios 58: 53–60.Google Scholar
  53. Moreira-Filho, O., L. A. C Bertollo & P. M. Galetti Jr., 1993. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZWsystem in Parodon hilarii (Parodontidae). Caryologia 46: 115–125.Google Scholar
  54. Morescalchi, A., J. C. Hureau, E. Olmo, C. Ozouf-Costaz, E. Pisano & R. Stanyon, 1992. A multiple sex-chromosome system in antarctic ice-fishes. Polar Biol. 11: 655–661.Google Scholar
  55. Muramoto, J., J. Azumi & H. Fukuoka, 1974. Karyotypes of nine species of salmonidae. Chrom. Inf. Serv. 17: 20–23.Google Scholar
  56. Murofushi, M., S. Oikawa, S. Nishikawa & T. H. Yosida, 1980. Cytogenetical studies on fishes. III. Multiple sex chromosome mechanism in the filefish Stephanolepis cirrhifer. Jap. J. Genet. 55: 127–132.Google Scholar
  57. Murofushi, M. & T. H. Yosida, 1984. Cytogenetical studies on fishes. VIII. XX-Y sex chromosome mechanism newly found in the snake eel, Muraenichthys gymnotus (Anguilliformes, Pisces). Proc. jap. Acad. 60B: 21–23.Google Scholar
  58. Natarajan, R. & K. Subrahmanyam, 1974. A karyotype study of some teleosts from Portonovo waters. Proc. ind. Acad. Sci. 79: 173–196.Google Scholar
  59. Nelson, J. S., 1994. Fishes of the world. 3rd edition. Wiley, New York.Google Scholar
  60. Nogusa, S., 1960. A comparative study of the chromosomes in fishes with particular considerations on taxonomy and evolution. Mem. Hyogo Univ. Agric. (Biol. Ser.) 3: 1–62.Google Scholar
  61. Nygren, A. & M. Jahnke, 1972. Microchromosomes in primitive fishes. Swed. J. agric. Res. 2: 229–238.Google Scholar
  62. Ohno, S. 1974. Sex chromosomes and sex determining mechanisms. In John, B. (ed.), Animal Cytogenetics 4. Gebrüder Borntraeger, Berlin: 46–63.Google Scholar
  63. Ohno, S., J. Muramoto, C. Stenius, L. Christian, W. A. Kittrell & N. B. Atkin, 1969. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26: 35–40.Google Scholar
  64. Ojima, Y. & H. Ueda, 1982. A karyotypical study of the conger eel (Conger myriaster) in in vitro cells, with special regard to the identification of the sex chromosome. Proc. jap. Acad. 58B: 56–59.Google Scholar
  65. Olmo, E., G. Odierna & T. Capriglione, 1987. Evolution of sexchromosomes in lacertid lizards. Chromosoma 96: 33–38.Google Scholar
  66. Ozouf-Costaz, C., J-C. Hureau & M. Beaunier, 1991. Chromosome studies on fish of the Suborder Notothenioidei collected in the Weddell Sea during EPOS 3 cruise. Cybium 15: 271–289.Google Scholar
  67. Ozouf-Costaz, C., E. Pisano, C. Bonillo & R. Williams, 1996. Ribosomal RNA location in the Antarctic fish Champsocephalus gunnari (Notothenioidei, Channichthyidae) using banding and fluorescence in situ hybridization. Chrom. Res. 4: 557–561.Google Scholar
  68. Ozouf-Costaz, C., E. Pisano, C. Thaeron & J-C. Hureau, 1997. Antarctic fish chromosome banding: significance for evolutionary studies. Cybium 21: 399–409.Google Scholar
  69. Pauls, E., P. R. A. M. Affonso, M. R. C. B. Netto & M. L. Pacheco, 1996. Supernumerary chromosomes onmarine fish Upeneus parvus (Poy 1853, Mullidae) from Atlantic Ocean. Arch. Zootec. 45: 295–299.Google Scholar
  70. Pauls, E., I. A. Coutinho, P. R. A. M. Affonso, M. R. C. B. Netto, A. S. S. Oliveira, W. Guedes & A. Afonso, 1998. Characterization of fish diversity along the coast of the state of Rio de Janeiro: a cytogenetic approach. First International Workshop on Marine Genetics-Rio 98, Rio de Janeiro, Brazil, book of abstracts: 58.Google Scholar
  71. Pendás, A. M., P. Morán & E. García-Vázquez, 1993. Multichromosomal location of ribosomal RNA genes and heterochromatin association in brown trout. Chrom. Res. 1: 63–67.Google Scholar
  72. Rishi, K. K., 1973. A preliminary report on the karyotypes of eighteen marine fishes. Res. Bull (N.S.) Panjab Univ. 24: 161–162.Google Scholar
  73. Rishi, K. K. & J. Singh, 1983. Karyological studies on two Indian estuarine catfishes, Plotosus canius Ham. and Pseudeutropius atherinoides (Bloch). Caryologia 36: 139–144.Google Scholar
  74. Roberts, F. L., 1968. Chromosomal polymorphism in North American landlocked Salmo salar. Can. J. Gen. Cytol. 10: 865–875.Google Scholar
  75. Rodriguez-Daga, R., A. Amores & G. Thode, 1993. Karyotype and nucleolus organizer regions in Epinephelus caninus (Pisces, Serranidae). Caryologia 46: 71–76.Google Scholar
  76. Rossi, A. R., M. Capula & D. E. Campton, 1998. Allozyme variation in global populations of striped mullet, Mugil cephalus (Pisces: Mugilidae). Mar. Biol. 131: 203–212.Google Scholar
  77. Rossi, A. R., D. Crosetti, E. Gornung & L. Sola, 1996. Cytogenetic analysis of global populations of Mugil cephalus (striped mullet) by different staining techniques and fluorescent in situ hybridization. Heredity 76: 77–82.Google Scholar
  78. Rossi, A. R., E. Gornung & D. Crosetti, 1997. Cytogenetic analysis of Liza ramada (Pisces, Perciformes) by different staining techniques and fluorescent in situ hybridization. Heredity 79: 83–87.Google Scholar
  79. Salvadori, S., A. Cau, E. Coluccia, A. Milia & A. M. Deiana, 1994. Karyotype, C-and G-banding and nucleolar organizer regions of Conger conger (Osteichthyes, Anguilliformes). Boll. Zool. 61: 59–63.Google Scholar
  80. Sánchez, L., P. Martínez, A. Viñas & C. Bouza, 1990. Analysis of the structure and variability of nucleolar organizer regions of Salmo trutta by C-, Ag-, and restriction endonuclease banding. Cytogenet. Cell Genet. 54: 6–9.Google Scholar
  81. Sola, L., S. Cataudella & E. Capanna, 1981. New developments in vertebrate cytotaxonomy III. Karyology of bony fishes: a review. Genetica 54: 285–328.Google Scholar
  82. Sola, L., S. Cataudella & A. Stefanelli, 1978. I cromosomi di quattro specie di Scorpaenidae Mediterranei (Pisces, Scorpaeniformes). Acc. Lincei-Rend. Sc. fis. mat. nat. 64: 393–397.Google Scholar
  83. Sola, L., O. Cipelli, E. Gornung, A. R. Rossi, F. Andaloro & D. Crosetti, 1997. Cytogenetic characterization of the greater amberjack, Seriola dumerili (Pisces, Carangidae), by different staining techniques and fluorescence in situ hybridization. Mar. Biol. 128: 573–577.Google Scholar
  84. Takai, A. & Y. Ojima, 1986. Some features on nucleolus organizer regions in fish chromosomes. In Uyeno, T. R., R. Arai & K. Matsura (eds), Proceedings of the Second International Conference on Indo-Pacific Fishes. Icthyological Society of Japan, Tokyo: 899–909.Google Scholar
  85. Takai, A. & Y. Ojima, 1987. Comparative chromosomal studies in three balistid fishes. Kromosomo (Tokyo) 47–48: 1545–1550.Google Scholar
  86. Thode, G., M. C. Alvarez, E. Garcia & V. Giles, 1985a. Variation in C-banding patterns and DNA values in two scorpion-fishes (Scorpaena porcus and S. notata, Teleostei). Genetica 68: 69–74.Google Scholar
  87. Thode, G., J. Cano & M. C. Alvarez, 1983. A karyological study on four species of Mediterranean gobiid fishes. Cytologia 48: 131–138.Google Scholar
  88. Thode, G., V. Giles & M. C. Alvarez, 1985b. Multiple chromosome polymorphism in Gobius paganellus (Teleostei, Perciformes). Heredity 54: 3–7.Google Scholar
  89. Thode, G., G. Martinez, J. L. Ruiz & J. R. Lopez, 1988. A complex chromosomal polymorphism in Gobius fallax (Gobiidae, Perciformes). Genetica 76: 65–71.Google Scholar
  90. Thorgaard, G. H., 1976. Robertsonian polymorphism and constitutive heterochromatin distribution in chromosomes of the rainbow trout (Salmo gairdneri). Cytogenet. Cell Genet. 17: 174–184.Google Scholar
  91. Thorgaard, G. H., 1978. Sex chromosomes in the sockeye salmon: a Y-autosome fusion. Can. J. Genet. Cytol. 20: 349–354.Google Scholar
  92. Venere, P. C. & P. M. Galetti Jr., 1989. Chromosome evolution and phylogenetic relationships of some Neotropical Characiformes of the family Curimatidae. Braz. J. Genet. 12: 17–25.Google Scholar
  93. Vitturi, R., P. Carbone, E. Catalano & M. Macaluso, 1986. Karyotypes of five species of Blennioidea (Pisces, Perciformes). Caryologia 39: 273–279.Google Scholar
  94. Vitturi, R. & E. Catalano, 1989. Multiple chromosome polymorphism in the gobiid fish Gobius niger jozo L. 1758 (Pisces, Gobiidae). Cytologia 54: 231–235.Google Scholar
  95. Vitturi, R., D. Colombera & E. Catalano, 1993. Intra-populational chromosome polymorphisms in four teleost species. Cytobios 75: 171–182.Google Scholar
  96. Wachtel, S., S. Demas, T. Tiersch, P. Pechan & D. Shapiro, 1991. BKm satellite DNA and ZFY in the coral reef fish Anthias squamipinnis. Genome 34: 612–617.Google Scholar
  97. Wiberg, U. H., 1983. Sex determination in the European eel (Anguilla anguilla, L.). A hypothesis based on cytogenetic results, correlated with the findings of skewed sex ratios in eel culture ponds. Cytogenet. Cell Genet. 36: 589–598.Google Scholar
  98. Yokoyama, T., N. Ebitani & T. Kubo, 1992. Karyotypes and banding patterns in eight species of the scorpionfish (Scorpaenidae). Zool. Sci. 9: 1210.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. M. GalettiJr.
    • 1
  • C. T. Aguilar
    • 2
  • W. F. Molina
    • 3
  1. 1.1Departamento de Genética e EvoluãoUniversidade Federal de São CarlosSão Carlos, SPBrazil
  2. 2.2Departamento de Genética – Instituto de BiologiaUniversidade Federal do Rio de Janeiro, CCS – Bloco ARio de Janeiro, RJBrazil
  3. 3.3Departamento de Biologia Celular e GenéticaUniversidade Federal do Rio Grande do NorteNatal, RNBrazil

Personalised recommendations