, Volume 426, Issue 1, pp 43–55 | Cite as

Preying at the edge of the sea: the nemertine Tetrastemma melanocephalum and its amphipod prey on high intertidal sandflats

  • Inken Kruse
  • Frank Buhs


In the European Wadden Sea, the nemertine Tetrastemma melanocephalumoccurs together with its prey, the amphipod Corophium arenarium, in the upper intertidal zone. T. melanocephalumleaves the sediment when the tide has receded and captures C. arenarium in its U-shaped burrow. Highest abundances of T. melanocephalumon the sediment surface were found on summer evenings, 2–4 h after high tide, when just a thin film of water was left on the flats. Laboratory Y-maze experiments indicated that gradients of substances produced by C. arenarium in this film of water play a role in tracking the prey. In the field, T. melanocephalum appeared in significantly higher numbers on experimental high density patches of C. arenarium. The amphipod in turn is able to recognize the nemertine. In aquarium experiments, significantly more amphipods escaped from the sediment into the water column when the predator was present. In the field, both predator and prey showed a high mobility by drifting in tidal waters. Benthic abundance maxima of T. melanocephalum and C. arenariumusually did not coincide spatially. It is assumed that the nemertines avoid tidal flats that dry out quickly leaving too little time for prey capture. T. melanocephalum is not able to dig into the sediment, but lives in burrows of Nereis diversicolor. The abundance of this polychaete was inversely related to C. arenarium, presenting a dilemma for T. melanocephalum: the spatial overlap of food and accommodation was rather small.

predation Corophium arenarium prey escape drift zonation Nereis diversicolor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrose, W. G., Jr., 1984a. Influences of predatory polychaetes and epibenthic predators on the structure of a soft-bottom community in a Maine estuary. J. exp. mar. Biol. Ecol. 81: 115–145.Google Scholar
  2. Ambrose, W. G., Jr., 1984b. Increased emigration of the amphipod Rhepoxynius arbonius (Barnard) and the polychaete Nephtys caeca (Fabricius) in the presence of invertebrate predators. J. exp. mar. Biol. Ecol. 80: 65–75.Google Scholar
  3. Ambrose, W. G., Jr., 1991. Are infaunal predators important in structuring marine soft-bottom communities? Am. Zool. 31: 849–860.Google Scholar
  4. Amerongen, H. M. & F.-S. Chia, 1982. Behavioural evidence for a chemoreceptive function of the cerebral organs in Paranemertes peregrina Coe (Hoplonemertea: Monstilifera). J. exp. mar. Biol. Ecol. 64: 11–16.Google Scholar
  5. Andres, H. G., 1970. Zur Biologie und Ökologie des Amphipoden Corophium volutator PALLAS (Corophiidae). Unpubl. Diploma Thesis, Univ. Hamburg: 71 pp.Google Scholar
  6. Armonies, W., 1994. Drifting meio-and macrobenthic invertebrates on tidal flats in Königshafen: a review. Helgoländer Meeresunters. 48: 299–920.Google Scholar
  7. Atema, J., 1988. Distribution of chemical stimuli. In Atema J., R. Fay, A. N. Popper & W. N. Tavolga (eds), Sensory Biology of Aquatic Animals. Springer-Verlag, New York: 29–56.Google Scholar
  8. Bartsch, I., 1973. Zur Nahrungsaufnahme von Tetrastemma melanocephalum (Nemertini). Helgoländer wiss. Meeresunters. 25: 326–331.Google Scholar
  9. Bartsch, I., 1975. Nahrung und Nahrungsaufnahme bei zwei Schnurwurm-(Nemertinen-) Arten. Mikrokosmos 1: 16–19.Google Scholar
  10. Bartsch, I., 1977. Zur Biologie des Nemertinen Tetrastemma melanocephalum (Johnston). Faun.-ökol. Mitt. 5: 125–128.Google Scholar
  11. Behrends, G. & H. Michaelis, 1977. Zur Deutung der Lebensspuren des Polychaeten Scolelepis squamata. Senckenberg. marit. 9: 47–57.Google Scholar
  12. Bengtson, S. A. & B. Svensson, 1968. Feeding habits of Calidris alpina L. and C. minuta Leisl. (Aves) in relation to the distribution of marine shore invertebrates. Oikos 19: 152–157.Google Scholar
  13. Beukema, J. J. & E. C. Flach, 1995. Factors controlling the upper and lower limits of the intertidal distribution of two Corophium species in the Wadden Sea. Mar. Ecol. Progr. Ser.: 117-126.Google Scholar
  14. Boates, J. S. & P. C. Smith, 1979. Length-weight-relationships, energy content and the effects of predation on Corophium volutator (Pallas) (Crustacea, pp. Amphipoda). Proc. NS Inst. Sci. 29: 489–499.Google Scholar
  15. Bousfield, E. C., 1973. Shallow-water Gammaridean Amphipoda of New England. Comstock Publ. Assoc., Ithaca, New York: 312 pp.Google Scholar
  16. Brey, T., 1991. The relative significance of biological and physical disturbances: an example from intertidal and subtidal sandy bottom communities. Estuar. coast. shelf. Sci. 33: 339–360.Google Scholar
  17. Bürger, O., 1897-1907. Nemertini (Schnurwürmer). H. G. Bronn's Klassen und Ordnungen des Tierreichs 4, Suppl.: 542 pp.Google Scholar
  18. Cadée, G. C., 1976. Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res. 10: 440–460.Google Scholar
  19. Commito, J. A., 1982. Importance of predation by infaunal polychaetes on controlling the structure of a soft-bottom community im Maine, U.S.A. Mar. Biol. 68: 77–81.Google Scholar
  20. Commito, J. A. & W. G. Ambrose, Jr., 1985a. Predatory infauna and trophic complexity in soft-bottom communities. In Gibbs, P. E. (ed.), Proceedings of the 19th European Marine Biology Symposium. Cambridge University Press, Cambridge: 323–333.Google Scholar
  21. Commito, J. A. & W. G. Ambrose, Jr., 1985b. Multiple trophic levels in soft-bottom communities. Mar. Ecol. Progr. Ser. 26: 289–293.Google Scholar
  22. Commito, J. A. & P. B. Schrader, 1985. Benthic community response to experimental additions of the polychaete Nereis virens. Mar. Biol. 86: 101–107.Google Scholar
  23. Dadswell, M. J., R. Bradford, A. H. Leim, D. J. Scarrat, D. G. Melvin & R. G. Appy, 1984. A review on research on fishes and fisheries on the Bay of Fundy between 1973 and 1983 with particular reference to its upper reaches. Can. Tech. Rep. Fish aquat. Sci. 1256: 163–294.Google Scholar
  24. Dean, D., 1978. The swimming of bloodworms (Glycera spp.) at night, with comments on other species. Mar. Biol. 48: 99–104.Google Scholar
  25. Esselink, P. & L. Zwarts 1989. Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar. Ecol. Progr. Ser. 56: 243–254.Google Scholar
  26. Essink, K., H. L. Kleef & W. Visser, 1989. On the pelagic occurrence and dispersal of the benthic amphipod Corophium volutator. J. mar. biol. Ass. U.K. 69: 11–15.Google Scholar
  27. Flach, E. C., 1992. Disturbance of benthic infauna by sedimentreworking activities of the lugworm Arenicola marina. Neth. J. Sea Res. 30: 81–89.Google Scholar
  28. Flach, E. C., 1993. The distribution of the amphipod Corophium arenarium in the Dutch Wadden Sea: relationships with sediment composition and the presence of cockles and lugworms. Neth. J. Sea Res. 31(3): 281–290.Google Scholar
  29. Flach, E. C., 1996. Distribution of Corophium at different scales. Senckenberg. marit. 27: 119–127.Google Scholar
  30. Flach, E. C. & W. De Bruin 1992. Effects of Arenicola marina and Cerastoderma edule on distribution, abundance and population structure of Corophium volutator in Gullmarsfjorden, western Sweden. Sarsia 78: 105–118.Google Scholar
  31. Flach, E. C. & W. De Bruin 1994. Does the activity of cockles, Cerastoderma edule (L.) and lugworms, Arenicola marina L., make Corophium volutator Pallas more vulnerable to epibenthic predators: a case of interaction modification? J. exp. mar. Biol. Ecol. 182: 265–285.Google Scholar
  32. Gibson, R., 1972. Nemerteans. Hutchinson University Library, London: 224 pp.Google Scholar
  33. Gibson, R., 1995. A synopsis of the British nemerteans. In Synopsis of the British Fauna. New Series, 24, University Press, Cambridge: 212 pp.Google Scholar
  34. Goerke, H., 1971. Die Ernährungsweise der Nereis-Arten, Polychaeta (Nereidae) der deutschen Küsten. Veröff. Inst. Meeresforsch. Bremerh. 13: 1–50.Google Scholar
  35. Goss-Custard, J. D., 1977. Predator responses and prey mortality in redshank, Tringa totanus (L.), and a preferred prey, Corophium volutator (Pallas). J. anim. Ecol. 46: 21–35.Google Scholar
  36. Hart, T. J., 1930. Preliminary notes on the bionomics of the amphipod, Corphium volutator PALLAS. J. mar. biol. Ass. U.K. 16: 761–789.Google Scholar
  37. Hicklin, P. W. & P. C. Smith, 1981. The diets of five species of migrant shorebirds in the Bay of Fundy. Proc. NS Inst. Sci. 31: 483–488.Google Scholar
  38. Hughes, R. G.,1988. Dispersal by benthic invertebrates: the in situ swimming behaviour of the amphipod Corophium volutator. J. mar. biol. Ass. U.K. 68: 565–579.Google Scholar
  39. Hughes, R. G. & I. M. Horsfall, 1990. Differences in the swimming behaviour of the amphipod Corophium volutator from different populations. J. mar. biol. Ass. U.K. 70: 143–148.Google Scholar
  40. Imrie, D. M. G. & G. R. Daborn, 1981. Food of some immature fish of Minas Basin, Bay of Fundy. Proc. NS. Inst. Sci. 31: 149–153.Google Scholar
  41. Jensen, K. T., 1985. The presence of the bivalve Cerastoderma edule affects migration, survival and reproduction of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 25: 269–277.Google Scholar
  42. Jensen, K. T., 1988. Recruitment and survival of Nereis diversicolor O. F. Müller and Corophium volutator (Pallas) in an artificial saltwater lagoon in the Danish Wadden Sea. Kieler Meeresforsch. Sdhft. 6: 366–374.Google Scholar
  43. Jensen, K. T. & C. André, 1993. Field and laboratory experiments on interactions among an infaunal polychaete, Nereis diversicolor, and two amphipods, Corophium volutator and C. arenarium: effects on survival, recruitment and migration. J. exp. mar. Biol. Ecol. 168: 259–278.Google Scholar
  44. Jensen, K. T. & L. D. Kristensen, 1990. A field experiment on competition between Corophium volutator (Pallas) and Corophium arenarium Crawford, Crustacea: (Amphipoda): effects on survival, reproduction and recruitment. J. exp. mar. Biol. Ecol. 137: 1–24.Google Scholar
  45. Jensen, K. T. & K. N. Mouritsen, 1992. Mass mortality in two common soft-bottom invertebrates, Hydrobia ulvae and Corophium volutator-the possible role of trematodes. Helgoländer Meeresunters. 46: 329–339.Google Scholar
  46. Jensen, T., K. T. Jensen & K. N. Mouritsen, 1998. The influence of the trematode Microphallus claviformis on two congeneric intermediate host species (Corophium): infection characteristics and host survival. J. exp. mar. Biol. Ecol. 227: 35–48.Google Scholar
  47. Kruse, I., 1996. Einnischung der Nemertine Tetrastemma melanocephalum in die Lebensgemeinschaft des 'Corophium-Watts'. Unpubl. Diploma Thesis, University of Kiel: 74 pp.Google Scholar
  48. Larsen, P. F. & L. F. Doggett, 1991. The macroinvertebrate fauna associated with the mud flats of the Gulf of Maine. Bull. mar. Sci. 7: 365–375.Google Scholar
  49. Lawrie, S. M. & D. G. Raffaelli, 1998a. Activity and mobility of Corophium volutator: a field study. Mar. Freshwat. Behav. Physiol. 31: 39–53.Google Scholar
  50. Lawrie, S. M. & D. G. Raffaelli, 1998b. In situ swimming behaviour of the amphipod Corophium volutator (Pallas). J. exp. mar. Biol. Ecol. 224: 237–251.Google Scholar
  51. Linke, O., 1939. Die Biota des Jadebusenwattes. Helgoländer wiss. Meeresunters. 1: 201–348.Google Scholar
  52. Mattila, J. & E. Bonsdorff, 1989. The impact of fish predation on shallow water soft bottoms in brackish waters (SW Finland), an experimental study. Neth. J. Sea Res. 23: 69–81.Google Scholar
  53. McDermott, J. J., 1976. Predation of the razor clam Ensis directus by the nemertean worm Cerebratulus lacteus. Chesapeake Sci. 17: 299–301.Google Scholar
  54. McDermott, J. J., 1984. The feeding biology of Nipponemertes pulcher (Johnston) (Hoplonemertea), with some ecological implications. Ophelia 23: 1–21.Google Scholar
  55. McDermott, J. J., 1988. The role of hoplonemerteans in the ecology of seagrass communities. Hydrobiologia 156: 1–11.Google Scholar
  56. McDermott, J. J., 1993. Nemertea inhabiting the Haploops (Amphipoda) community of the northern Øresund with special reference to the biology of Nipponnemertes pulcher (Hoplonemertea). Hydrobiologia 266: 15–28.Google Scholar
  57. McDermott, J. J. & P. Roe, 1985. Food, feeding behavior and feeding ecology of nemerteans. Am. Zool. 25: 113–125.Google Scholar
  58. Meadows, P. S., 1964. Experiments on substrate selection by Corophium species: films and bacteria on sand particles. J. exp. Biol. 41: 499–511.Google Scholar
  59. Muus, B., 1967. The fauna of Danish estuaries and lagoons. Meddr. Danm. Fisk. Havunders. NS 5: 1–316.Google Scholar
  60. Murdoch, W. W. & A. Oaten, 1975. Predation and population stability. In Macfayden, A. (ed.), Advances in Ecological Research. Academic Press, London, 9: 1–131.Google Scholar
  61. Nordhausen, W., 1988. Impact of the nemertean Lineus viridis on its polychaete prey on an intertidal sandflat. Hydrobiologia 156: 39–46.Google Scholar
  62. Ólafsson, E. B. & L. E. Persson, 1986. The interaction between Nereis diversicolor O. F. Müller and Corophium volutator Pallas as a structuring force in a shallow brackish sediment. J. exp. mar. Biol. Ecol. 103: 103–117.Google Scholar
  63. Peer, D. L., L. E. Linkletter & P. W. Hicklin 1986. Life history & reproductive biology of Corophium volutator (Crustacea: Amphipoda) and the influence of shorebird predation on population structure in Chignecto Bay, Bay of Fundy, Canada. Neth. J. Sea Res. 20: 359–373.Google Scholar
  64. Peterson, C. H., W. G. Ambrose & J. H. Hunt, 1982. A field experiment on the swimming response of the Bay Scallop (Argopecten irradians) to changing biological factors. Bull. mar. Sci. 32: 939–944.Google Scholar
  65. Plagmann, J., 1939. Ernährungsbiologie der Garnele (Crangon vulgaris Fabr.). Helgoländer wiss. Meeresunters. 2: 113–162.Google Scholar
  66. Raffaelli, D. & H. Milne 1987. An experimental investigation of flat-fish and shorebird predation on estuarine invertebrates. Estuar. coast. shelf. Sci. 24: 1–13.Google Scholar
  67. Reise, K., 1978. Experiments on epibenthic predation in the Wadden Sea. Helgoländer wiss. Meeresunters. 31: 55–101.Google Scholar
  68. Reise, K., 1979. Moderate predation on meiofauna by the macrobenthos of the Wadden Sea. Helgoländer wiss. Meeresunters. 32: 453–465.Google Scholar
  69. Reise, K., 1985. Tidal Flat Ecology. Ecological Studies 54, Springer-Verlag, Berlin: 191 pp.Google Scholar
  70. Riisgard, H. U., 1991. Suspension feeding in the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 70: 29–37.Google Scholar
  71. Roe, P., 1970. The nutrition of Paranemertes peregrina (Rhynchocoela: Hoplonemertea). I. Studies on food and feeding behavior. Biol. Bull. 139: 80–91.Google Scholar
  72. Roe, P., 1971. Life history and predator-prey interactions of the nemertean Paranemertes peregrina Coe. Unpubl. Ph. D. Thesis, University of Seattle: 129 pp.Google Scholar
  73. Roe, P., 1976. Life history and predator-prey interactions of the nemertean Paranemertes peregrina Coe. Biol. Bull. 150: 80–106.Google Scholar
  74. Rönn, C., E. Bonsdorff & W. G. Nelson, 1988. Predation as a mechanism of interference within infauna in shallow brackish water soft bottoms; experiments with an infauna predator, Nereis diversicolor O. F. Müller. J. exp. mar. Biol. Ecol. 116: 143–157.Google Scholar
  75. Smidt, E. L. B., 1951. Animal production in the Danish Waddensea. Meddr. Danm. Fisk. Havunders. 11: 1–151.Google Scholar
  76. Thiel, M., 1992. Zur Ökologie von Nemertinen im Wattenmeer. Unpubl. diploma thesis, University of Kiel: 69 pp.Google Scholar
  77. Thiel, M., 1998. Nemertines as predators on tidal flats-high noon at low tide. Hydrobiologia 365: 241–250.Google Scholar
  78. Thiel, M. & K. Reise, 1993. Interaction of nemertines and their prey on tidal flats. Neth. J. Sea Res. 31: 163–172.Google Scholar
  79. Thiel, M. & T. Dernedde, 1996. Reproduction of Amphiporus lactifloreus (Hoplonemertini) on tidal flats: implications for studies on the population biology of nemertines. Helgoländer Meeresunters. 50: 337–351.Google Scholar
  80. Thiel, M., W. Nordhausen & K. Reise, 1995. Nocturnal surface activity of endobenthic nemertines. In Eleftheriou, A., A. D Ansell & C. J. Smith (eds), Biology and Ecology of Shallow Coastal Waters. Proceedings of the 28th European Marine Biology Symposium, Iraklio, Crete, 1993. Olsen & Olsen, Fredensborg: 283–293.Google Scholar
  81. Watkin, E. E., 1941. The yearly life cycle of the amphipod Corophium volutator. J. anim. Ecol. 10: 77–93.Google Scholar
  82. Wilson, W. H., Jr., 1988. Shifting zones in a Bay of Fundy soft sediment community, patterns and processes. Ophelia 29 (3): 227–245.Google Scholar
  83. Wilson, W. H., Jr., 1989. Predation and the mediation of intraspecific competition on an infaunal community in the Bay of Fundy. J. exp. mar. Biol. Ecol. 132 (3): 221–245.Google Scholar
  84. Wilson, W. H., Jr., 1990. Relationship between prey abundance and foraging site selection by semipalmated sandpipers on a Bay of Fundy mudflat. J. Field Ornith. 61: 9–19.Google Scholar
  85. Wilson, W. H. & K. Parker, 1996. The life history of the amphipod, Corophium volutator: the effects of temperature and shorebird predation. J. exp. mar. Biol. Ecol. 196 (1-2): 239–250.Google Scholar
  86. Witte, F. & P. A. W. J. De Wilde, 1979. On the ecological relation between Nereis diversicolor and juvenile Arenicola marina. Neth. J. Sea Res. 13: 394–405.Google Scholar
  87. Woodin, S. A., 1983. Biotic interactions in recent marine sedimentary environments. In Tevesz, M. J. S. & P. L. McCall (eds), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York: 3–38.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Inken Kruse
    • 1
  • Frank Buhs
    • 2
  1. 1.Wadden Sea Station SyltAlfred Wegener Institute Foundation for Polar and Marine ResearchList/SyltGermany
  2. 2.Zoologisches Institut, Arbeitsgruppe Marine Ökologie und SystematikUniversität KielKielGermany

Personalised recommendations