Advertisement

Journal of Applied Electrochemistry

, Volume 30, Issue 4, pp 467–474 | Cite as

Electrochemical behaviour of olefins: oxidation at ruthenium–titanium dioxide and iridium–titanium dioxide coated electrodes

  • C.L.P.S. Zanta
  • A.R. de Andrade
  • J.F.C. Boodts
Article

Abstract

The electrocatalytic behaviour of a series of olefins was studied on thermally prepared Ti/MO2 and Ti/M0.3Ti0.7O2 electrodes (M = Ru, Ir) in 1.0 M HClO4 in mixed solvent (AN/H2O, 40/60v/v). The voltammetric investigation was limited to the potential region preceding the OER on these electrodes materials (E < 1.2 V vs SSCE). Aliphatic olefins (isophorone and cyclohexene) are inactive while the aromatic olefins show a single (safrole) or two (isosafrole) oxidation peaks. The overall catalytic activity of these electrode materials is about the same for both substrates. However, when morphological effects (differences in electrode surface area) are taken into account, normalizing the geometric current density (or faradaic charge) per surface site activity, a slightly better efficiency of the active surface sites is observed for Ru-based electrodes when compared to the equivalent Ir-based materials. Partial substitution of the noble metal catalysts by TiO2 results in a synergetic effect depressing the efficiency of the active surface sites of the TiO2-stabilized electrocatalysts. The decrease with potential cycling of the substrate oxidation current is attributed to dimeric/polymeric film formation blocking the electrode surface. Reflectance and FTIR spectroscopy as well as ohmic resistance data support film formation.

catalytic activity iridium dioxide olefins oxide electrodes ruthenium dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Trasatti, ‘Electrodes of Conductive Metallic Oxide’, Part A and B Elsevier Scientific Publishing, Amsterdam, 1980/1981.Google Scholar
  2. 2.
    E.J.M. O'Sullivan and J.R. White, J. Electrochem. Soc. 136 (1989) 2576.Google Scholar
  3. 3.
    M.E.G. Lyons, C.H. Lyons, A. Michas and P.N. Bartlett, J. Electroanal. Chem. 351 (1993) 245.Google Scholar
  4. 4.
    K. Asokan and V. Krishnan, Bull. Electrochem. 4 (1988) 827.Google Scholar
  5. 5.
    S.M. Lin and T.C. Wen, J. Appl. Electrochem. 25 (1995) 73.Google Scholar
  6. 6.
    D.T. Shieh and B.J.Hwang, J. Electrochem. Soc. 142 (1995) 816.Google Scholar
  7. 7.
    C. Comninellis and A. De Battisti, J. Chim. Phys. 93 (1996) 673.Google Scholar
  8. 8.
    O. Simond, V. Schaller and C. Comninellis, Electrochim. Acta 42 (1997) 2009.Google Scholar
  9. 9.
    L.D. Burke and O.J. Murphy, J. Electroanal. Chem. 109 (1980) 199.Google Scholar
  10. 10.
    L.D. Burke and J.F. Healy, J. Electroanal. Chem. 124 (1981) 327.Google Scholar
  11. 11.
    L.D. Burke and M.Mc Carthy, Electrochim. Acta 29 (1984) 211.Google Scholar
  12. 12.
    R. Kotz and S. Stucki, Electrochim. Acta 31 (1986) 1311.Google Scholar
  13. 13.
    A.M. Couper, D. Pletcher and F.C. Walsh, Chem. Rev. 90 (1990) 837.Google Scholar
  14. 14.
    D. Galizzioli, F. Tantardini and S. Trasatti, J. Appl. Electrochem. 5 (1975) 203.Google Scholar
  15. 15.
    R. Kötz, S. Stucki and B. Carcer, J. Appl. Electrochem. 21 (1991) 14.Google Scholar
  16. 16.
    S. Stucki, R. Kötz, B. Carcer and W. Suter, J. Appl. Electrochem. 21 (1991) 99.Google Scholar
  17. 17.
    C. Comninellis and A. Nerini, J. Appl. Electrochem. 25 (1995) 23.Google Scholar
  18. 18.
    S. Ye and F. Beck, Electrochim. Acta 36 (1991) 597.Google Scholar
  19. 19.
    N.T. Farinacci, US Pat. 2 794 813 (1957); Chem. Abstr. 51, 6572 (1957); A.V. Bogastskii, A.P. Antonov, Y.V. Gavyevich, V.V. Titor and V.Y. Kalashnikov, USSR Pat. 490 793 (1975); Chem. Abstr. 84, 74254 (1976).Google Scholar
  20. 20.
    J.M. Madurro, G. Chiericato, W.F. de Giovani and J.R. Romero, Tetrahedron Lett. 29 (1988) 765.Google Scholar
  21. 21.
    J. Grimshaw and C. Hua, Electrochim. Acta 39 (1994) 497.Google Scholar
  22. 22.
    R. Garavaglia, C.M. Mari and S. Trasatti, Surf. Technol. 23 (1984) 41.Google Scholar
  23. 23.
    D. Galizzioli, F. Tantardini and S. Trasatti, J. Appl. Electrochem. 4 (1974) 57.Google Scholar
  24. 24.
    L.D. Burke and O.J. Murphy, J. Electroanal. Chem. 96 (1979) 19.Google Scholar
  25. 25.
    S. Ardizzone, G. Fregonara and S. Trasatti, Electrochim. Acta 35 (1990) 263.Google Scholar
  26. 26.
    T.C. Wen and C.C. Hu, J. Electrochem. Soc. 139 (1992) 2158.Google Scholar
  27. 27.
    L.A. da Silva, V.A. Alves, M.A.P. da Silva, S. Trasatti and J.F.C. Boodts, Can. J. Chem. 75 (1997) 1483.Google Scholar
  28. 28.
    C.P. De Pauli and S. Trasatti, J. Electroanal. Chem. 396 (1995) 161.Google Scholar
  29. 29.
    G.N. Martelli, R. Ornelas and G. Faita, Electrochim. Acta 11-12 (1994) 1551.Google Scholar
  30. 30.
    A. Bewich, C. Gutiérres and G. Larramona, J. Electroanal. Chem. 332 (1992) 155.Google Scholar
  31. 31.
    L.A. da Silva, V.A. Alves, M.A.P. da Silva, S. Trasatti and J.F.C. Boodts, Electrochim. Acta 42 (1997) 271.Google Scholar
  32. 32.
    32. V.A. Alves, L.A. da Silva and J.F.C. Boodts, J. Appl. Electrochem. 28 (1998) 899.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • C.L.P.S. Zanta
    • 1
  • A.R. de Andrade
    • 1
  • J.F.C. Boodts
    • 2
  1. 1.Chemistry Department, FFCLRP-USPUniversidade de São PauloRibeirão Preto, SPBrazil
  2. 2.Chemistry DepartmentUniversidade Federal de UberlândiaUberlândia, MGBrazil

Personalised recommendations