, Volume 107, Issue 1–3, pp 181–187 | Cite as

Transposable elements as activators of cryptic genes in E. coli

  • Barry G. Hall


The concept of transposable elements (TEs) as purely selfish elements is being challenged as we have begun to appreciate the extent to which TEs contribute to allelic diversity, genome building, etc. Despite these long-term evolutionary contributions, there are few examples of TEs that make a direct, positive contribution to adaptive fitness. In E.coli cryptic (silent) catabolic operons can be activated by small TEs called insertion sequences (IS elements). Not only do IS elements make a direct contribution to fitness by activating cryptic operons, they do so in a regulated manner, transposing at a higher rate in starving cells than in growing cells. In at least one case, IS elements activate an operon during starvation only if the substrate for that operon is present in the environment. It appears that E. coli has managed to take advantage of ISelements for its own benefit.

IS element β-glucoside β-galactoside E. coli selfish DNA adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blattner, F.R., G. Plunket III, C.A. Bloch, N.T. Perna, V. Burland, M. Riley, J. Collado-Vides, J.D. Glasner, C.K. Rode, G.F. Mayhew, J. Gregor, N.W. Davis, H.A. Kiekpatrick, M.A. Goeden, D.J. Rose, B. Mau & Y. Shao, 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462.PubMedCrossRefGoogle Scholar
  2. Defez, R. & M. deFelice, 1981. Cryptic operon for β-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein. Genetics 97: 11–25.PubMedGoogle Scholar
  3. DiNardo, S., K.A. Voelkel, R. Sternglanz, A.E. Reynolds & A. Wright, 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31: 43–51.PubMedCrossRefGoogle Scholar
  4. Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.PubMedCrossRefGoogle Scholar
  5. Giel, M., M. Desnoyer & J. Lopilato, 1996. A mutation in a new gene, bglJ, activates the bgl operon in Escherichia coli K-12. Genetics 143: 627–635.PubMedGoogle Scholar
  6. Hall, B.G., 1978. Regulation of newly evolved enzymes. IV Directed evolution of the ebg repressor. Genetics 90: 673–691.PubMedGoogle Scholar
  7. Hall, B.G., 1981. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry 20: 4042–4049.PubMedCrossRefGoogle Scholar
  8. Hall, B.G., 1983. Evolution of new metabolic functions in the laboratory. pp. 234–257 in Evolution of Genes and Proteins, edited by M. Nei and R. Koehn, Sinauer Associates, Sunderland, Mass.Google Scholar
  9. Hall, B.G., 1995. Evolutionary potential of the ebgA gene. Mol. Biol. Evol. 12: 514–517.PubMedGoogle Scholar
  10. Hall, B.G., 1998. Activation of the bgl operon by adaptive mutation. Mol. Biol. Evol. 15: 1–5.PubMedGoogle Scholar
  11. Hall, B.G., 1999. The spectra of spontaneous growth-dependent and adaptive mutations in ebgR. J. Bacteriol. 181: 1149–1155.PubMedGoogle Scholar
  12. Hall, B.G. & P.W. Betts, 1987. Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli. Genetics 115: 431–439.PubMedGoogle Scholar
  13. Hall, B.G., P.W. Betts & J.C. Wootton, 1989. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics 123: 635–648.PubMedGoogle Scholar
  14. Hall, B.G. & D.L. Hartl, 1974. Regulation of newly evolved enzymes. I. Selection of a novel lactase regulated by lactose in Escherichia coli. Genetics 76: 391–400.PubMedGoogle Scholar
  15. Hall, B.G. & D.L. Hartl, 1975. Regulation of newly evolved enzymes. II. The ebg repressor. Genetics 81: 427–435.Google Scholar
  16. Hall, B.G. & L. Xu, 1992. Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol. Biol. Evol. 9: 688–702.PubMedGoogle Scholar
  17. Hall, B.G., S. Yokoyama & D. Calhoun, 1983. Role of cryptic genes in microbial evolution. Mol. Biol & Evol. 1: 109–124.Google Scholar
  18. Jurka, J. & V.V. Kapitonov, 1999. Sectorial mutagenesis by transposable elements. Genetica 107: 239–248.PubMedCrossRefGoogle Scholar
  19. Kricker, M. & B.G. Hall, 1984. Directed evolution of cellobiose utilization in Escherichia coli. Mol. Biol. & Evol. 1: 171–182.Google Scholar
  20. Kricker, M. & B.G. Hall, 1987. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12. Genetics 115: 419–429.PubMedGoogle Scholar
  21. Li, W.-H., 1984. Retention of cryptic genes in microbial populations. Mol. Biol. Evol. 1: 212–218.Google Scholar
  22. Mahadeven, S., A. E. Reynolds & A. Wright, 1987. Positive and negative regulation of the bgl operon of Escherichia coli. J. Baceriol. 169: 2570–2578.Google Scholar
  23. Orgel, L.E. & F. H. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.PubMedCrossRefGoogle Scholar
  24. Pardue, M.-L. & P.G. DeBaryshe, 1999. Drosophila telomeres: two transposable elements with important roles in chromosomes. Genetica 107: 189–196.PubMedCrossRefGoogle Scholar
  25. Parker, L.L. & B. G. Hall, 1988. A fourth E. coli gene system with the potential to evolve β-glucoside utilization. Genetics 119: 485–490.PubMedGoogle Scholar
  26. Parker, L.L. & B.G. Hall, 1990a. Characterization and nucleotide sequence of the cryptic cel operon of E. coli K12. Genetics 124: 455–471.PubMedGoogle Scholar
  27. Parker, L.L. & B.G. Hall, 1990b. Mechanisms of activation of the cryptic cel operon of E. coli K12. Genetics 124: 473–482.PubMedGoogle Scholar
  28. Prasad, I. & S. Schaefler, 1974. Regulation of the β-glucoside system in Escherichia coli K12. J. Bacteriol. 120: 638–650.PubMedGoogle Scholar
  29. Reizer, J., A. Reizer & M.H. Saier, Jr, 1990. The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res.Microbiol. 141: 1061–1067.PubMedCrossRefGoogle Scholar
  30. Schnetz, K., 1995. Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J. 14: 2545–2550.PubMedGoogle Scholar
  31. Schnetz, K. & B. Rak, 1988. Regulation of the bgl operon of Escherichia coli by transcriptional anti-termination. EMBO J. 7: 3271–3277.PubMedGoogle Scholar
  32. Schnetz, K. & B. Rak, 1992 IS5: a mobile enhancer of transcription in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 1244–1248.PubMedCrossRefGoogle Scholar
  33. Schnetz, K., C. Toloczyki & B. Rak, 1987. β-glucoside (Bgl) operon of Escherichia coli K12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J. Bacteriol. 169: 2579–2590.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Barry G. Hall
    • 1
  1. 1.Biology Department, River CampusUniversity of RochesterRochesterUSA (Phone: (h

Personalised recommendations