Genetica

, Volume 107, Issue 1–3, pp 189–196 | Cite as

Drosophila telomeres: two transposable elements with important roles in chromosomes

  • M.-L. Pardue
  • P.G. DeBaryshe
Article

Abstract

Telomeres in Drosophila melanogaster are composed of multiple copies of two retrotransposable elements, HeT-A and TART instead of the short DNA repeats generated by telomerase in most organisms. Transpositions of HeT-A and yield arrays of repeats larger and more irregular than the repeats produced by telomeras; nevertheless, these transpositions are, in principle, equivalent to the telomere-building action of telomerase. Both telomerase and transposition of HeT-A and TART extend chromosomes by RNA-templated addition of specific sequences. We have proposed that HeT-A has evolved from genes encoding telomerase components. Although both HeT-A and TART share some novel features, TART probably has a different origin from HeT-A. HeT-A and TART are clearly identifiable as non-long terminal repeat (non-LTR) retrotransposons. Both telomere elements transpose only to the ends of chromosomes (apparently to any chromosome end in D. melanogaster) and each contains a large segment of untranslated sequence. HeT-A and TART are the first examples of transposable elements with a clear role in chromosome structure. This has interesting implications for the evolution of both chromosomes and transposable elements. The finding also raises the possibility that other transposable elements with bona fide roles in the cell will be detected, not only in Drosophila, but also in other organisms.

chromosomes promoters retrotransposable elements telomerase telomeres 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkhipova, I.R., N.V. Lyubomirskaya & Y.V. Ilyin, 1995. Drosophila Retrotransposons. R.G. Landes Company, Austin TX.Google Scholar
  2. Biessmann H., L.E. Champion, M. O'Hair, K. Ikenaga, B. Kasravi & J.M. Mason, 1992. Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J. 11: 4459–4469.PubMedGoogle Scholar
  3. Biessmann H., B. Kasravi, T. Bui, G. Fujiwara, L.E. Champion & J.M. Mason, 1994. Comparison of two active Het-A retroposons of Drosophila melanogaster. Chromosoma 103: 90–98.PubMedGoogle Scholar
  4. Blackburn, E.H., 1992. Telomerases. Annu. Rev. Biochem. 61: 113–129.PubMedCrossRefGoogle Scholar
  5. Danilevskaya, O.N., I.R. Arkhipova, K.L. Traverse & M.L. Pardue, 1997. Promoting in tandem; the promoter for the telomere transposon HeT-A and implications for evolution of retroviral LTRs. Cell 88: 647–655.PubMedCrossRefGoogle Scholar
  6. Danilevskaya, O.N., K. Lowenhaupt & M.L. Pardue, 1998. Conserved subfamilies of the Drosophila HeT-A telomere-specific retrotransposon. Genetics 148: 233–242.PubMedGoogle Scholar
  7. Danilevskaya, O.N., C. Tan, J. Wong, M. Alibhai & M.-L. Pardue, 1998. Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in D. yakuba telomere elements. Proc. Natl. Acad. Sci. USA 95: 3770–3775.PubMedCrossRefGoogle Scholar
  8. Danilevskaya, O.N., K.L. Traverse, N.C. Hogan, P.G. DeBaryshe & M.-L. Pardue, 1999. The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol. Cell. Biol. 19: 873–881.PubMedGoogle Scholar
  9. Day, A., M. Schirmer-Rahire, M.R. Kuchka, S.P. Mayfield & J.-D. Rochaix, 1988. A transposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. EMBO J. 7: 1967–1972.Google Scholar
  10. Doolittle, R.F., D.-F. Feng, M.A. McClure & M.S. Johnson, 1990. Retrovirus phylogeny and evolution. Curr. Top. Microbiol. Immunol. 157: 1–18.PubMedGoogle Scholar
  11. Kirk, K.E., B.P. Harmon, I.K. Reichardt, J.W. Sedat & E.H. Blackburn, 1997. Block in anaphase chromosome separation caused by a telomerase template mutation. Science 275: 1478–1481.PubMedCrossRefGoogle Scholar
  12. Lendvay, T.S., D.K. Morris, J. Sah, B.V. Balasubramnian & V. Lundblad, 1996. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144: 1399–1412.PubMedGoogle Scholar
  13. Ligner, J., T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad & T.R. Cech, 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.CrossRefGoogle Scholar
  14. McClean, C., A. Bucheton & D.J. Finnegan, 1993. The 5′-untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression. Mol. Cell. Biol. 13: 1042–1050.Google Scholar
  15. McDonald, J.F., 1995. Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10: 123–126.CrossRefGoogle Scholar
  16. Meyerson, M., C.M. Counter, E.N. Eaton, L.W. Ellisen, P. Steiner, S.D. Caddle, L. Ziaugra, R.L. Beijersbergen, M.J. Davidoff, Q. Liu, S. Bacchetti, D.A. Haber & R.A. Weinberg, 1997. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during imortilization. Cell 90: 785–795.PubMedCrossRefGoogle Scholar
  17. Mizrohki, L.J., S.G. Georgieva & Y.V. Ilyin, 1988. Jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II. Cell 54: 685–691.CrossRefGoogle Scholar
  18. Muller, H.J. & I.H. Herskowitz, 1954. Concerning the healing of chromosome ends produced by breakage in Drosophila melanogaster. Am. Nat. 88: 177–208.CrossRefGoogle Scholar
  19. Muller, H.J., 1941. Induced mutations in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 9: 151–167.Google Scholar
  20. Nakamura, T.M., G.B. Morin, K.B. Chapman, S.L. Weinrich, W.H. Andrews, J. Ligner, C.B. Harley & T.R. Cech, 1997. Telomerase catalytic subunit homologues from fission yeast and human. Science 227: 955–959.CrossRefGoogle Scholar
  21. Okazaki, S., K. Tsuchida, H. Maekawa, H. Ishikawa & H. Fujiwara, 1993. Identification of a pentanucleotide telomeric sequence (TTAGG)n in the silkworm Bombyx mori and other insects. Mol. Cell. Biol. 13: 1424–1432.PubMedGoogle Scholar
  22. Pardue, M.L., 1995. Drosophila telomeres: another way to end it all, pp. 339–370 in Telomeres, edited by C. Greider and E. Blackburn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  23. Pardue, M.-L. & P.G. DeBaryshe, 1999. Telomeres and telomerase: more than the end of the line. Chromosoma 108: 73–82.PubMedCrossRefGoogle Scholar
  24. Pardue, M.L., O.N. Danilevskaya, K. Lowenhaupt, J. Wong & K. Erby, 1996. The gag coding region of the Drosophila telomeric retrotransposon, HeT-A, has an internal frame shift and a length polymorphic region. J. Mol. Evol. 43: 572–583.PubMedCrossRefGoogle Scholar
  25. Schumann, G., I. Zundorf, J. Hoffmann, R. Marschalek & T. Dingermann, 1994. Internally located and oppositely oriented polymerase II promoters direct convergent transcription of a LINE-like retroelement: the Dictyostelium Repetitive Element from Dictyostelium discoideum. Mol. Cell. Biol. 14: 3074–3084.PubMedGoogle Scholar
  26. Sheen, F.-m. & R.W. Levis, 1994. Transposition of the LINE-like retrotransposon, TART, to Drosophila chromosome termini. Proc. Natl. Acad. Sci. 91: 12510–12514.PubMedCrossRefGoogle Scholar
  27. Swergold, G.D., 1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell Biol. 10: 6718–6729.PubMedGoogle Scholar
  28. Yu, G.L., J.D. Bradley, L.D. Attardi & E.H. Blackburn, 1990. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344: 126–132.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M.-L. Pardue
    • 1
  • P.G. DeBaryshe
    • 1
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA (Phone: (

Personalised recommendations