, Volume 107, Issue 1–3, pp 87–93 | Cite as

Phylogenetic evidence for Ty1-copia-like endogenous retroviruses in plant genomes

  • Howard M. Laten


SIRE-1 is a multi-copy, Ty1-copia-like retroelement family found in the genome of Glycine max. A sequenced SIRE-1 genomic copy has an uninterrupted ORF that can be translated into a gag-pol polyprotein, followed by an unprecedented second ORF whose conceptual translation yielded a theoretical protein predicted to possess many of the same secondary structural elements found in mammalian retroviral envelope proteins. Similar, but clearly pseudogenic, envelope-like sequences were recovered from conceptual translations of 10 Arabidopsis Gen-Bank accessions. All were associated with identifiable Ty1-copia-like retroelements. Phylogenetic analysis of the adjacent ribonuclease H regions from these sequences and three similarly endowed elements, two from maize and one from tomato, indicate that the 14 elements constitute a monophyletic group distinct from several closely related plant Ty1-copia-like elements in which polis immediately followed by a downstream LTR. The conservation of identifiable env-like gene features suggests that these plant elements are endogenous retroviruses whose ancestors were acquired from animal vectors. The finding that the env and env-less retroelements identified in this study form distinct lineages does not support the hypothesis that horizontal transmission of retrotransposons is sponsored by ancestral infectious retroviruses that subsequently lost all traces of env genes.

Arabidopsis envelope retrotransposon reverse transcriptase soybean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D.J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.PubMedCrossRefGoogle Scholar
  2. Bennetzen, J.L., 1996. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347–353.PubMedCrossRefGoogle Scholar
  3. Bhattacharyya, M.K., R.A. Gonzales, M. Kraft & R.I. Buzzell, 1997. A copia-like retrotransposon Tgmr closely linked to the Rps-k allele that confers race-specific resistance of soybean to Phytophthora sojae. Plant Mol. Biol. 34: 255–264.PubMedCrossRefGoogle Scholar
  4. Bi, Y.-A. & H.M. Laten, 1996. Sequence analysis of a cDNA containing the gag and prot regions of the soybean retrovirus-like element, SIRE-1. Plant Mol. Biol. 30: 1315–1319.PubMedCrossRefGoogle Scholar
  5. Boeke, J.D., T. Eickbush, S.B. Sandmeyer & D.F. Voytas, 1999. Metaviridae, In Virus Taxonomy: ICTV VIIth Report, edited by M.H.V. van Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Maniloff, M.S. Mayo, D.J. McGeoch, C.R. Pringle & R.B. Wickner. Academic Press, NY, in press.Google Scholar
  6. Boeke, J.D. & J.P. Stoye, 1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements, pp. 343–436 in Retroviruses, edited by J.M. Coffin, S.H. Hughes & H.E. Varmus. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  7. Britten, R.J., 1995. Active gypsy/Ty3 retrotransposons or retroviruses in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92: 599–601.PubMedCrossRefGoogle Scholar
  8. Britten, R.J., T.J. McCormack, T.L. Mears & E.H. Davidson, 1995. Gypsy/Ty3-class retrotransposons integrated in the DNA of herring, tunicate, and echinoderms. J. Mol. Evol. 40: 13–24.PubMedCrossRefGoogle Scholar
  9. Brunt, A.A., K. Crabtree, M.J. Dallwitz, A.J. Gibbs, L. Watson & E.J. Zurcher (eds.), 1997. Plant Viruses Online: Descriptions and Lists from the VIDE Database, Version 16.Google Scholar
  10. Bureau, T.E., S.E. White & S.R. Wessler, 1994. Transduction of a cellular gene by a plant retroelement. Cell 77: 479–480.PubMedCrossRefGoogle Scholar
  11. Carrington, J.C., K.D. Kasschau, S.K. Mahajan & M.C. Schaad, 1996. Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8: 1669–1681.PubMedCrossRefGoogle Scholar
  12. Coffin, J.M., 1993. Reverse transcriptase and evolution, pp. 445–479 in Reverse Transcriptase, edited by A.M. Skalka & S.P. Goff. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  13. Ding, B., 1998. Intercellular protein trafficking through plasmodesmata. Plant Mol. Biol. 38: 279–310.PubMedCrossRefGoogle Scholar
  14. Doolittle, R.F. & D.-F. Feng, 1992. Tracing the origin of retroviruses. Curr. Top. Microbiol. Immunol. 176: 195–211.PubMedGoogle Scholar
  15. Eickbush, T.H., 1994. Origin and evolutionary relationships of retroelements, pp. 121–157 in The Evolutionary Biology of Viruses, edited by S.S. Morse. Raven Press, NY.Google Scholar
  16. Felder, H., A. Herzceg, Y. deChastonay, P. Aeby, H. Tobler & F. Muller, 1994. Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. Gene 149: 219–225.PubMedCrossRefGoogle Scholar
  17. Flavell, A.J., V. Jackson, M.P. Iqbal, I. Riach & S. Waddell, 1995. Ty1-copia group retrotransposon sequences in amphibia and reptilia. Mol. Gen. Genet. 246: 65–71.PubMedCrossRefGoogle Scholar
  18. Flavell, A.J. & D.B. Smith, 1992. A Ty1-copia group retro-transposon sequence in a vertebrate. Mol. Gen. Genet. 233: 322–326.PubMedCrossRefGoogle Scholar
  19. Flavell, A.J., D.B. Smith & A. Kumar, 1992. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol. Gen. Genet. 231: 233–242.PubMedGoogle Scholar
  20. Goldbach, R. & D. Peters, 1996. Molecular and biological aspects of tospoviruses, pp. 129–157 in The Bunyaviridae, edited by R.M. Elliott. Plenum Press, NY.Google Scholar
  21. Inouye, S., S. Yuki & K. Saigo, 1986. Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur. J. Biochem. 154: 417–425.PubMedCrossRefGoogle Scholar
  22. Jin, Y.-K. & J.L. Bennetzen, 1994. Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement in maize. Plant Cell 6: 1177–1186.PubMedCrossRefGoogle Scholar
  23. Kim, A., C. Terzian, P. Santamaria, A. Pelisson, N. Prud'homme & A. Bucheton, 1994. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 91: 1285–1289.PubMedCrossRefGoogle Scholar
  24. Kumar, A., 1996. The adventures of the Ty1-copia family of retrotransposons in plants. Trends Genet. 12: 41–43.PubMedCrossRefGoogle Scholar
  25. Kumar, A., 1998. The evolution of plant retroviruses: moving to greener pastures. Trends Plant Sci. 3: 371–374.CrossRefGoogle Scholar
  26. Laten, H.M. & R.O. Morris, 1993. SIRE-1, a long interspersed repetitive DNA element from soybean with weak sequence similarity to retrotransposons: initial characterization and partial sequence. Gene 133: 153–159.CrossRefGoogle Scholar
  27. Laten, H.M., A. Majumdar & E.A. Gaucher, 1998. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc. Natl. Acad. Sci. USA 95: 6897–6902.PubMedCrossRefGoogle Scholar
  28. Leblanc, P., S. Deswset, B. Dastugue & C. Vaury, 1997. Invertebrate retroviruses — Zam, a new candidate in D. melanogaster. EMBO J. 16: 7521–7531.PubMedCrossRefGoogle Scholar
  29. Lerat, E. & P. Capy, 1999. Retrotransposons and retroviruses: Analysis of the envelope gene. Mol. Biol. Evol. 16: 1198–1207.PubMedGoogle Scholar
  30. Mumford, R.A., I. Barker & K.R. Wood, 1996. The biology of tospoviruses. Ann. Appl. Biol. 128: 159–183.CrossRefGoogle Scholar
  31. Nault, L.R., 1994. Transmission biology, vector specificity and evolution of planthopper-transmitted plant viruses, pp.429–448 in Planthoppers: Their Ecology and Management, edited by R.F. Denno & T.J. Perfect. Chapman and Hall, NY.Google Scholar
  32. Ozers, M.S. & P.D. Friesen, 1996. The Env-like open reading frame of the baculovirus-integrated retrotransposon TED encodes a retrovirus-like envelope protein. Virology 226: 252–259.PubMedCrossRefGoogle Scholar
  33. Pardue, M.L., N. Danilevskaya, K. Lowenhaupt, F. Slot & K.L. Traverse, 1996. Drosophila telomeres: new views on chromosome evolution. Trends Gent. 12: 48–52.CrossRefGoogle Scholar
  34. Patience, C., D.A. Wilkenson & R.A. Weiss, 1997. Our retroviral heritage. Trends Genet. 13: 116–120.PubMedCrossRefGoogle Scholar
  35. Peterson-Burch, B.D., D.A. Wright, H.M. Laten & D.F. Voytas, 2000. Retroviruses in Plants? Trends Genet. 16: 151–152.PubMedCrossRefGoogle Scholar
  36. Petropoulos, C., 1997. Retroviral taxonomy, protein structures, sequences, and genetic maps, pp. 757–805 in Retroviruses, edited by J.M. Coffin, S.H. Hughes & H.E. Varmus, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  37. Saigo, K., W. Kugimiya, Y. Matsuo, S. Inouye, K. Yoshioka & S. Yuki, 1984. Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature 312: 659–661.PubMedCrossRefGoogle Scholar
  38. SanMiguel, P., A. Tikhonov, Y.-K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.PubMedCrossRefGoogle Scholar
  39. Song, S.U., T. Gerasimova, M. Kurkulos, J.D. Boeke & V.G. Corces, 1994. An Env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 8: 2046–2057.PubMedGoogle Scholar
  40. Suoniemi, A., J. Tanskanen & A.H. Schulman, 1998. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 13, 699–705.PubMedCrossRefGoogle Scholar
  41. Tanda, S., J.L. Mullor & V.G. Corces, 1994. The Drosophila tom retrotransposon encodes an envelope protein. Mol. Cell. Biol. 14: 5392–5401.PubMedGoogle Scholar
  42. Temin, H.M., 1992. Origin and general nature of retroviruses, pp. 1–18 in The Retroviridae, Vol 1, edited by J.A. Levy. Plenum Press, NY.Google Scholar
  43. Voytas, D.F., M.P. Cummings, A. Konieczny, F.M. Ausubel & S.R. Rodermel, 1992. copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89: 7124–7128.PubMedCrossRefGoogle Scholar
  44. Wright, D.A. & D.F. Voytas, 1998. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149: 703–715.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Howard M. Laten
    • 1
  1. 1.Biology DepartmentLoyola University ChicagoChicago

Personalised recommendations