, Volume 410, Issue 0, pp 151–166 | Cite as

Understanding the oxygen budget and related ecological processes in the river Mosel: the RIVERSTRAHLER approach

  • Josette Garnier
  • Gilles Billen
  • Laurent Palfner


The oxygen budget in the transboundary river Mosel was analyzed with the help of the RIVERSTRAHLER model. The model, developed for the river Seine, was used after minor modifications of the kinetics of microbial processes. The impact of benthic filter feeders (Dreissena polymorpha) was introduced into the model to better explain phytoplankton decline in the canalized sector of the river. Hydro-geomorphology, meteorology and point and non-point sources of nutrients were analyzed as required by the model, according to the stream order concept at the scale of the whole drainage network of the main tributaries and along the main branch of the river Mosel, from Millery to Koblenz. The model was validated on water quality data (phytoplankton biomass -Chl a-, nutrients, oxygen) collected at half-monthly intervals during the period 1993–1995. A reasonable agreement was found at both the seasonal and spatial scales. The validated model was used to calculate the oxygen budget that shows variations in the contributions of biological processes (net primary production, bacterial and benthic respiration, nitrification) along successive stretches of the main river branch. Bacterial respiration dominates in sectors particularly affected by effluent inputs. Benthic filter feeders colonising these canalized sectors contribute to increases in respiration and oxygen deficit through their own respiration and their impact on phytoplankton. Several possible management scenarios, aimed at improving oxygenation, were tested with the model. An 80% reduction of both phosphates (to reduce eutrophication) and organic matter (to decrease bacterial activity) restores autotrophic conditions in the 7th order sector.

river Mosel ecological modelling oxygen budget P vs R ratio phytoplankton decline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Admiral, W., S. D. Mylius, E. D. De Ruyter van Steveninck & G. M. J. Tubbing (1993). A model of phytoplankton production in the lower River Rhine verified by observed changes in silicate concentration. J. Plankton Res. 15: 659-682.Google Scholar
  2. Admiral, W., L. Breebaart, G. M. J. Tubbing, B. van Zanten, E. D. De Ruyter van Steveninck & R. Bijkerk, 1994. Seasonal variation in composition and production of planktonic communities in the lower River Rhine. Freshwat. Biol. 32: 519-531.Google Scholar
  3. Bachmann, V. & P. Usseglio-Polatera & J.-C. Moreteau, 1997. Contribution of the benthic compartment. CIPMS/IKSMS report 'Oxygen budget and biological processes in the regulated rivers Moselle and Saar': 112 p.Google Scholar
  4. Bachmann, V. & P. Usseglio-Polatera, 1999. Contribution of the macrobenthic compartment to the oxygen budget of a large regulated river: the Mosel. Hydrobiologia 410: 39-46.Google Scholar
  5. Billen, G., P. Servais, 1989. Modélization des processus de dégradation de la matière organique enmilieu aquatique. In M. Bianchi et al. (eds), Microorganismes. Dans les Écosystèmes Océaniques, Chap. 8. 219-245, Masson, Paris.Google Scholar
  6. Billen, G., 1991. Protein degradation in aquatic environments. In R. Chröst (ed.), Microbial Enzymes in Aquatic Environments, Chap. 7. 122-142, Springer Verlag.Google Scholar
  7. Billen, G., J. Garnier & Ph. Hanset, 1994. Modelling phytoplankton development in whole drainage networks: the 'riverstrahler' model applied to the Seine river system. Hydrobiologia 289: 119-137.Google Scholar
  8. Billen, G., H. Décamps, J. Garnier, M. Meybeck, P. Servais & Ph. Boët, 1995. River and Stream ecosystems, Cushing, Cumming & Marshall (eds). Chapter 12. France, Belgium, Netherlands. Elsevier: 389-418.Google Scholar
  9. Billen, G. & J. Garnier, 1996. Transfert et métabolisme de l'azote et du phosphore dans l'hydrosystème Seine. In C. Le Coz, B. Tassin & D. Thévenot (eds), 'Transfert des Polluants dans les Hydrosystèmes”. Actes des Journées Sciences et Techniques de l'Environnment. Presses de l'Ecole Nationale des Ponts et Chaussées. Paris: 121-140.Google Scholar
  10. Boët, Ph., M. Akopian, J. Belliard, R. Berrebi-dit-Thomas, A. Miquelis, R. Pourriot, E. Talès & P. Testard, 1998. La Faune Aquatique. In M. Meybeck et al. (eds), La Seine en son Bassin. Elsevier, Paris: 627-678.Google Scholar
  11. Brion, N., 1998. Etude du Processus de nitrification à l'échelle de grands réseaux hydrographiques anthropisés. Ph.D. Thesis. Faculté des Sciences. Université Libre de Bruxelles, 85 pp.Google Scholar
  12. Bultot, F. & G. Dupriez, 1976. Conceptual hydrological model for an average-sized catchment area. J. hydrol. 39: 251-292.Google Scholar
  13. Capblancq, J., A. Dauta, B. Caussade & H. Décamps, 1982. Variations journalières de la production primaire du phytoplancton en rivière: modélization d'un bief du Lot. Ann. Limnol., 18: 101-132.Google Scholar
  14. Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. G. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response in increased grazing. Ecology 78: 588-602.Google Scholar
  15. Dauta, A., 1986. Modélization du développement du phytoplancton dans une rivière canalisée eutrophe: le Lot (France). Ann. Limnol., 22: 119-132.Google Scholar
  16. De Ruyter van Steveninck, E. D., W. Admiraal, L. Breebaart, G. M. J. Tubbing & B. van Zanten, 1992. Plankton in the River Rhine. Structural and functional changes observed during downstream transport. J. Plankton Res. 14: 1351-1368.Google Scholar
  17. Descy, J.-P., P. Servais, J. S. Smitz, G. Billen & E. Everbeck, 1987. Phytoplankton biomass and production in the river Meuse (Belgium). Wat. Res. 12: 1557-1566.Google Scholar
  18. Descy, J.-P. & V. Gosselain, 1994. Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium). Hydrobiologia 289:139-155.Google Scholar
  19. Garnier, J. & G. Billen, 1993. Ecological interactions in a shallow sand-pit lake (Créteil Lake, France). A modelling approach. In Nutrient dynamics and biological structure in shallow freshwater and brackish lakes. Hydrobiologia 275/276: 97-114.Google Scholar
  20. Garnier, J., G. Billen & M. Coste, 1995. Seasonnal succession of diatoms and Chlorophyceae in the drainage network of the river Seine: Observations and modelling. Limnol. Oceanogr. 40: 750-765.Google Scholar
  21. Garnier, J. & G. Billen, 1998. Développement algal et eutrophization. In Meybeck et al. (eds), La Seine en Son Bassin. Elsevier, Paris: 593-626.Google Scholar
  22. Gosselain, V., J. P. Descy & E. Everbeck, 1994. The phytoplankton community of the river Meuse, Belgium: seasonal dynamics (year 1992) and the possible incidence of zooplankton grazing. Hydrobiologia 289: 179-191.Google Scholar
  23. Gosselain, V., J.-P. Descy & L. Viroux, 1997. Final report of the 3 years of study on phytoplankton dynamics, primary production, in situ zooplankton grazing, daily cycle of oxygen content and zooplankton spatial distribution. CIPMS/IKSMS report 'Oxygen budget and biological processes in the regulated rivers Moselle and Saar': 76pp.Google Scholar
  24. Gosselain, V., L. Viroux & J.-P. Descy, 1998. Can a community of small-bodied grazers control phytoplankton in rivers? Freshwat. Biol. 39: 9-24.Google Scholar
  25. Hammer, M. & Mc K. A. Kichan, 1981. Hydrology and quality of water resources. J. Wiley & Sons, Inc.: 280 pp.Google Scholar
  26. Kattan, Z., J.-L. Salleron & J.-L. Probst, 1986. Bilans et dynamiques du transfert de l'azote et du phosphore sur le bassin de laMoselle (Nord-Est de la France). Sc. Eau 5: 435-459.Google Scholar
  27. Khalanski, M., 1997. Conséquences industrielles et écologiques de l'introduction de nouvelles espèces dans les hydrosystèmes continentaux: la moule zébrée et autres espèces invasives. Bull. fr. Piscic. 344/345: 385-404.Google Scholar
  28. Kölher, J., 1995. Growth, production and losses of phytoplankton in lowland River Spree: carbon balance. Freshwat. Biol. 34: 501-512.Google Scholar
  29. Lancelot, C., C. Veth & S. Mathot, 1991. Modelling ice-edge phytoplankton bloom in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988. J. Mar. system 2: 333-346.Google Scholar
  30. MacIsaac, H. J., C. J. Lonnee & J. H. Leach, 1995. Suppression of microzooplankton by zebra mussels: importance of mussel size. Freswat. Biol. 34:379-387.Google Scholar
  31. Pace, M. L., E. Stuart, G. Findlay & D. Fisher, 1998. Effect of invasive bivalve on zooplankton community of the river Hudson. Freshwat. Ecol. 39: 103-116.Google Scholar
  32. Peter, S. & H. Kaltwasser, 1997. Bacterioplankton activities and oxygen budget in the regulated rivers Mosel and Saar. CIPMS/IKSMS report.Google Scholar
  33. Quotbi, A., 1996. Etude de la dynamique du phytoplancton et des nutriments dans une rivière aménagée le Lot (France). Modélization mathématique et simulations de scénarios. Thèse Doct. Université Paul Sabatier, Toulouse: 272pp.Google Scholar
  34. Reeders, H. H., A. Bij de Vaate & F. J. Slim, 1989. The filtration rate of Dreissena polymorpha (Bivalvia) in three Dutch lakes with reference to biological water quality management.Google Scholar
  35. Reynolds, C. S. & Descy, 1996. The production, biomass and structure of phytoplankton in large rivers. Arch. Hydrobiol. Suppl 113, Large Rivers 10: 1-4.Google Scholar
  36. Schöl, A., V. Kirchesch, T. Bergfeld & D. Müller, 1997. Oxygen budget and biological processes in the regulated rivers Mosel and Saar. The BfG model. Phase 3: 80pp + annex.Google Scholar
  37. Schöl, A., V. Kirchesch, T. Bergfeld & D. Müller, 1999. Modelbased analysis of oxygen budget and biological processes in the regulated rivers Moselle and Saar: modelling the influence of benthic filter feeders on phytoplankton. Hydrobiologia, 410: 167-176.Google Scholar
  38. Stanczykowska, A. & K. Lewandowski, 1993. Effect of filtering activity of Dreissena polymorpha (Pall.) on the nutrient budget of the littoral of the lake Mikolajskie. Hydrobiologia 251: 73-79.Google Scholar
  39. Strahler, A. H., 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 38: 913-920.Google Scholar
  40. Testard, P., 1991. Elements d'écologie de la Dreissène Dreissena polymorpha Pallas. Etude de la dispersion des larves et de leur fixation. Réponses à la désoxygénation de l'eau. Thèse Doct. D'Etat, Univ. P. M. Curie, Paris 6: 357pp.Google Scholar
  41. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130-137.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Josette Garnier
    • 1
  • Gilles Billen
    • 1
  • Laurent Palfner
    • 2
  1. 1.1UMR CNRS 7619 Sisyphe, UPMC boite 123ParisFrance
  2. 2.2NANCIe, Centre International de l'Eau, 149, rue Gabriel PériVandoeuvre cedexFrance

Personalised recommendations