Advertisement

Journal of Applied Electrochemistry

, Volume 30, Issue 3, pp 315–322 | Cite as

Electrowinning of tellurium from alkaline leach liquor of cemented Te

  • Y.-C. Ha
  • H.-J. Sohn
  • G.-J. Jeong
  • C.K. Lee
  • K.-I. Rhee
Article

Abstract

The electrochemical behaviour of tellurium in 2.5 M NaOH solution was studied for the recovery of tellurium from alkaline leach liquor of cemented Te using steady state polarization and cyclic voltammetry. The deposition characteristics and the potential range for a stable deposit of tellurium were also investigated. The morphology of deposited Te in alkaline solution showed a very porous nature and needlelike radial growth. The potential range for stable electrodeposition was between −0.8 V and −0.95 V (vs Hg/HgO electrode), but electrowinning could be carried out at more negative potentials due to the disproportionation reaction of Te22−. Laboratory-scale electrowinning experiments were performed under different operating voltages, temperatures and initial Te concentrations. The current efficiency was about 85–90% for 50% recovery and about 50–60% for 90% recovery. The purity of electrodeposited Te was higher than 99.95%.

alkaline leach liquor cemented Te electrodeposition electrowinning tellurium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Hoffmann, JOM 41(7) (1989) 32.Google Scholar
  2. 2.
    K.-I. Rhee, C.-K. Lee, C.-S. Yoo, T.-H. Kim, H.-S. Kim and H.-J. Sohn, Proceedings of the EPD Congress 1997, TMS, Orlando, FA, 9–13 Feb. (1997), p. 495.Google Scholar
  3. 3.
    J.J. Lingane and L.W. Niedrach, J. Am. Chem. Soc. 70 (1948) 4115.Google Scholar
  4. 4.
    J.J. Lingane and L.W. Niedrach, J. Am. Chem. Soc. 71 (1949) 196.Google Scholar
  5. 5.
    A.J. Panson, J. Phys. Chem. 67 (1963) 2177.Google Scholar
  6. 6.
    R.A. Jemieson and S.P. Perone, J. Electroanal. Chem. 23 (1969) 411.Google Scholar
  7. 7.
    K.K. Mishra, D. Ham and K. Rajeshwar, J. Electrochem. Soc. 137 (1990) 3483.Google Scholar
  8. 8.
    M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solution’, 2nd edn., NACE, Houston TX (1974), p. 560.Google Scholar
  9. 9.
    G. Trejo, A.F. Gil and I. González, J. Appl. Electrochem. 26 (1996) 1287.Google Scholar
  10. 10.
    Y. Castrillejo, A.M. Martinez, M. Vega and P.S. Batanero, J. Appl. Electrochem. 26 (1996) 1279.Google Scholar
  11. 11.
    E. Gómez, J. Ramirez and E. Vallés, J. Appl. Electrochem. 28 (1998) 71.Google Scholar
  12. 12.
    S.I. Zhdanov, ‘Encyclopedia of Electrochemistry of the Elements’, Vol. 4 (Marcel Dekker, New York, 1974), p. 393.Google Scholar
  13. 13.
    B. Handle, G. Broderick and P. Paschen, Hydrometallurgy 46 (1997) 105.Google Scholar
  14. 14.
    J. Jorné and M.C. Lee, J. Electrochem. Soc. 143 (1996) 865.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Y.-C. Ha
    • 1
  • H.-J. Sohn
    • 1
  • G.-J. Jeong
    • 2
  • C.K. Lee
    • 3
  • K.-I. Rhee
    • 3
  1. 1.School of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Mineral and Petroleum EngineeringSeoul National UniversitySeoulKorea
  3. 3.Minerals & Materials Processing DivisionKorea Institute of Geology, Mining & MaterialsTaejonKorea

Personalised recommendations