Advertisement

Hydrobiologia

, Volume 405, Issue 0, pp 169–178 | Cite as

The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese lake: possibilities and effects

  • Fu-Liu Xu
  • Shu Tao
  • Zhuo-Ran Xu
Article

Abstract

Experiments with replanting macrophytes in Lake Chao showed that the water quality inside an Alternathera philoxeroides Griseb.and a Phragmites australis community were better than outside. Transparency was significantly higher and the content of N and P decreased inside the communities, as did the rate of sedimentation of organic suspended matter in the Phragmites australis community. Modeling revealed that macrophyte restoration could decrease phytoplaniton biomass, increase fish biomass, exergy, structural exergy, zooplankton/phytoplankton ratio and transparency (Xu et al., 1999b). It is concluded that macrophyte restoration can purify lake water, regulate lake biological structure and control eutrophication.

Seasonal riparian wetlands macrophytes ecological effects eutrophication Ecological-Economic Water Level; Lake Chao 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, L. A., 1992. Introduction to nonpoint source pollution in the United States and prospects for wetland use. Ecol. Eng. 1: 1–26.Google Scholar
  2. Brix, H. & H.-H. Schierup. 1989. The use of aquatic macrophytes in water-pollution control. Ambio 18: 100–107.Google Scholar
  3. Carpenter, S. R., 1981. Submersed vegetation: an internal factor in lake ecosystem succession. Am. Nat. 118: 372–383.Google Scholar
  4. Clasen, J., W. Rast & S. O. Ryding, 1989. Available techniques for treating eutrophication. In: Ruding S. O. & W. Rast (eds), The Control of Eutrophication of Lakes and Reservoirs. Man and the Biosphere Series vol. 1. UNESCO. Paris: 264 pp.Google Scholar
  5. Conley, L. M., R. I. Dick & L. M. Lion, 1991. An assessment of the root zone method of wastewater treatment. Res. J. Water Pollut. 63: 239–247.Google Scholar
  6. Cooke, G. D., E. B. Welch, S. A. Peterson & P. R. Newroth, 1993. Restoration and Management of Lakes and Reservoirs (2nd Edn). Lewis Publ: 548 pp.Google Scholar
  7. Cooper, P. F. & B. C. Findlater (eds), 1990. Constructed Wetlands inWater Pollution Control. Proceedings of the International Conference on the Use of Constructed Wetlands in Water Pollution Control. Pergamon. Oxford: 77–84.Google Scholar
  8. Grimm, M. P., 1994. The influence of aquatic vegetation and population biomass on recruitmant of 0+ and 1+ northern pike (Esox Lucius L.). In Cowx, I. G. (ed.), Rehabilitation of Freshwater Fisheries. Fisheries News Books, Blackwell, Oxford: 280 pp.Google Scholar
  9. Gumbricht, T., 1992. Tertiary wastewater treatment using root-zone method in temperature climate. Hydrobiologia 170: 245–266.Google Scholar
  10. Gumbricht, T., 1993. Nutrient removal capacity in submersed macrophyte pond systems in a temperate climate. Ecol. Eng. 1: 49–61.Google Scholar
  11. Hammer, D. A. (ed.), 1989. Constructed Wetlands for Wastewater Treatment: Municipal. Industrial and Agricultural. Lewis, Chelsea, MI: 831 pp.Google Scholar
  12. Hammer, D. A. (ed.), 1992. Designing Constructed Wetlands to Treat Agricultural Nonpoint Source Pollution. Ecol. Eng. 1: 49–82.Google Scholar
  13. Horne A. J. & C. R. Goldman, 1994. Limnology (2nd edn). McGraw-Hill, Inc: 576 pp.Google Scholar
  14. Jørgensen, S. E., 1995. Exergy ald Ecological Buffer Capacities as Measures of Ecosystem Health. Ecosystem Health 1: 150–160.Google Scholar
  15. Li, W. & Q. Yan, 1995. Wetland utilization in Lake Taihu for fish farming and improvement of lake water quality. Ecol. Eng. 5: 107–121.Google Scholar
  16. Ma, S., 1985. Ecological engineering: application of ecosystem principles. Envir. Conserv. 12: 331–335.Google Scholar
  17. Mitsch, W. J. & J. G. Gosselink, 1986. WETLANDS. Van Nostrand Reinhold Company, New York: 539 pp.Google Scholar
  18. Mitsch, W. J., 1992. Landscape design and the role of created, restored and natural riparian wetlands in controlling nonpoint source pollution. Ecol. Eng. 1: 27–47.Google Scholar
  19. Mitsch, W. J. & S. E. Jørgensen (eds), 1989. Ecological Engineering: An Introduction Ecotechnology. Wiley, New York: 185–217.Google Scholar
  20. Moss, B., J. H. Stansfield, K. Irvine, M. R. Perrow & G. L. Phillips, 1996. Progreesive restoration of a shallow lake – a 12-year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.Google Scholar
  21. Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. J. Wat. Pollut. Cont. Fed. 55: 495–505.Google Scholar
  22. Patten, B. C., 1990. Waterlines and shallow continental water bodies. Volume 1. Natural and human relationships. SPB Academic Publishing: 759 pp.Google Scholar
  23. Rast, W. & M. Holland, 1988. Eutrophication of lakes and reservoirs: a framework for making management decisions. Ambio. 17: 2–12.Google Scholar
  24. Reed, S. C., E. J. Middlebrooks & R. W. Crites, 1988. Natural Systems for West Management & Treatment. McGran Hill. New York: 588 pp.Google Scholar
  25. Reed, S. C. (ed.), 1990. Natural Systems for Wastewater Treatment. Manual of Practice FD-16. Wat. Pollut. Cont. Fed., Alexandria, U.S.A: 260 pp.Google Scholar
  26. Rich, P. H., & R. G. Wetzel, 1978. Detritus in the lake ecosystem. Am. Nat. 112: 57–71.CrossRefGoogle Scholar
  27. Ryding, S. O. & W. Rast, 1989. The control of eutrophication of lakes and reservoirs. Man and the biosphere series vol. 1. UNESCO. Paris: 265 pp.Google Scholar
  28. Scheffer M., M. Van der Berg, A. Breukelar, C. Breukers, H. Coops, R. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 49: 193–196.Google Scholar
  29. Tilton, D. L. & R. H. Kadlec, 1979. The utilization of a freshwater wetland for nutrient removal from secondary treated waste water effluents. J. envir. Qual. 8: 328–334.Google Scholar
  30. Tu, Q. Y., D. X. Gu, C. Q. Yi, Z. R. Xu & G. Z. Han, 1990. The Researches on the Lake Chao Eutrophication. The publisher of University of Science and Technology of China. Hefei: 225 pp. (in Chinese).Google Scholar
  31. Van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food web manipulation in lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–34.Google Scholar
  32. Wang, S. Y., C. S. Jin, R. X. Meng & F. L. Xu, 1995. Environmental Research for the Lake Chao in Anhui Province. In Jin, X. C. (ed.), Lakes in China (Volume one). China Ocean Press: 580 pp.Google Scholar
  33. Wolverton, B. C., 1987. Aquatic plalts for wastewater treatment: An overview. In Reddy, K. R. & W. H. Smith (eds), Aquatic Plants for Water Treatment and Resources Recovery. Magnolia Pub. Inc., Orlando, FL: 3–16.Google Scholar
  34. Xu, F. L., 1994. Scientific Decision-making System for Environmental Management of the Lake Chao Watershed. Environ. Protection. 21(5): 36–39.Google Scholar
  35. Xu, F. L., 1996. Ecosystem health assessment of Lake Chao, a shallow eutrophic Chinese lake. Lakes & Reservoirs: Research and Management, 2: 101–109.Google Scholar
  36. Xu, F. L., 1997. Exergy and structural exergy as ecological indicators for the development state of the Lake Chao ecosystem. Ecol. Model. 99: 41–49.Google Scholar
  37. Xu, F. L., S. E. Jøgensen & S. Tao, 1999a. Ecological indicators for assessing freshwater ecosystem health. Ecol. Model. 116: 77–106.Google Scholar
  38. Xu, F. L., S. E. Jøgensen, S. Tao & B. G. Li, 1999b. Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake. Ecol. Model. 117: 239–260.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.Department of Urban & Environmental SciencesPeking UniversityBeijingChina
  2. 2.Anhui Institute for Environmental SciencesHefeiChina

Personalised recommendations