Advertisement

Euphytica

, Volume 112, Issue 1, pp 69–78 | Cite as

Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.)

  • G.S. Hemamalini
  • H.E. Shashidhar
  • Shailaja Hittalmani
Article

Abstract

Root morphology under well-watered conditions sampled on two occasions and under low-moisture stress was studied in a randomly chosen subset of 56 doubled haploid lines derived from a cross between IR64 and Azucena at two growth stages during the vegetative stage. A molecular map of the same population served as the basis for locating QTLs controlling root morphology and associated traits. The region flanking the RFLP markers RZ730 and RZ801 on chromosome 1 were associated with plant height in all three sampling environments. This position corresponds to sd-1 a semi-dwarfing gene. A total of 15 QTL were detected at the two developmental stages, of which only three QTL were common. Region flanked by RG157 and RZ318 (chromosome 2) contained QTL for root thickness under two different developmental stages. In total, 21 QTL for different traits were detected under low-moisture stress condition. While two QTL for plant height on chromosomes 1 and 3 were common, none of the loci for root morphological traits was common between the two different moisture regimes. The chromosomal segment between RG171 and RG157 contained QTL controlling tiller number per plant, total root length, root volume and total root number per plant. Absence of common QTL for root traits between two developmental stages and two moisture regimes suggests the existence of parallel genetic pathways operating at different growth stages and moisture regimes. Root volume and total root number per plant decreased significantly under stress, whereas maximum root length and plant height exhibited non-significant increases under stress.

drought resistance QTL mapping RFLP markers rice root traits vegetative stage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, L., 1999. Mapping quantitative trait loci for root traits related to drought resistance in rice (Oryza sativa L.) using AFLP markers. PhD Dissertation, Texas Tech University, Lubbock, USA.Google Scholar
  2. Aragon, E.L. & S.K. DeDatta, 1982. Drought response of rice at different irrigation levels using line source sprinkler system. Irrig Sci 3: 63-73.CrossRefGoogle Scholar
  3. Arraudeau, M.A., 1989. Breeding strategies for drought resistance. In: F.W.G Baker (Ed.), Drought Resistance in Cereals, pp. 107-116. CAB International, Wallingford, UK.Google Scholar
  4. Austin, D.F. & M. Lee, 1998. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38: 1296-1308.CrossRefGoogle Scholar
  5. Basten, C.J., B.Z. Zhao & S.W. Bruce, 1996. QTL Cartographer: a suite of programs for mapping QTL. Abstracts. Plant Genome IV International Conference on status of plant genome research, San Diego. Jan 14-18.Google Scholar
  6. Beavis, W.D. & P. Keim, 1996. Identification of QTL that are affected by the environment. In: M.S. Kang & H.G. Hugh (Eds), New Perspective on Genotype-by-Enviroment interactions. CRC Press, Inc., Boca Raton, FL, USA.Google Scholar
  7. Bidinger, F.R. & J.R. Witcombe, 1989. Evaluation of specific drought avoidance as selection criteria for improvement of drought resistance. In: F.W.G. Baker (Ed.), Drought Resistance in Cereals, pp. 151-164. CAB International, Wallingford, UKGoogle Scholar
  8. Blum, A., 1982. Evidence of genetic variability in drought resistance in rice and its implication in plant breeding. In: Drought Resistance in Crops with Special Emphasis on Rice, pp. 52-70. Los Banos, International Rice Research Institute, Philippines.Google Scholar
  9. Blum, A., 1989. Breeding for drought resistance. In: H.G. Jones, T.J. Flowers & M.B. Jones (Eds), Plants under Stress-Biochemistry, Physiology and Ecology and their Application to Plant Improvement, pp. 211-216. Cambridge University Press, Cambridge.Google Scholar
  10. Brady, N.C., 1985. The nature and properties of soils. MacMillan publishing company, New York.Google Scholar
  11. Causse, M.A., T.M. Fulton, Y.G. Cho, S.N. Ahn, J. Chunwongse, K. Wu, J.Z. Xiao, P.C. Ronald, S.E. Harrington, G. Second, S.R. McCouch & S.D. Tanksley, 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251-1274.PubMedGoogle Scholar
  12. Ceccarelli, S., 1987. Yield potential and drought tolerance of segregating populations of barley in contrasting environments. Euphytica 36: 265-273.CrossRefGoogle Scholar
  13. Ceccarelli, S. & S. Grando, 1993. From conventional plant breeding to molecular biology. International Crop Science I, Crop Science Society of America, Inc. Madison, WI 53711, USA, pp. 533-538.Google Scholar
  14. Champoux, M.C., G. Wang, S.S. Sarkarung, D.J. Mackill, J.C. O'Toole, N. Huang & S.R. McCouch, 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90: 969-981.CrossRefGoogle Scholar
  15. Chen, X., S. Temykh, Y. Xu, Y.G. Cho & S.R. McCouch, 1997. Development of a microsatellite framework map providing genomewide coverage in rice (Oryza sativa L.). Theor Appl Genet 95: 553-567.CrossRefGoogle Scholar
  16. Cho, Y.G., M.Y. Eun, S.R. McCouch & Y.A. Chae, 1994. The semi-dwarf gene, sd-1, of rice (Oryza sativa L.) II. Molecular mapping and marker assisted selection. Theor Appl Genet 90: 54-59.Google Scholar
  17. Chopra, R.K. & S.K. Sinha, 1998. Prospects of success of biotechnological approaches for improving tolerance to drought stress in crop plants. Current Science 74(1): 25-34.Google Scholar
  18. Doerge, R.W., 1993. Statistical methods for locating quantitative trait loci using molecular markers. PhD Dissertation thesis. North Carolina State University, Raleigh, North Carolina. USA.Google Scholar
  19. Ekanayake, I.J., J.C. O'Toole, D.P. Garrity & T.N. Masajo, 1985. Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25: 927-933.CrossRefGoogle Scholar
  20. Fukai S. & M. Cooper, 1995. Development of drought resistant cultivars using physiomorphological traits in rice. Field Crop Res 40: 67-86.CrossRefGoogle Scholar
  21. Guiderdoni, E., E. Galinato, J. Luistro & G. Vergara, 1992. Anther culture of tropical japonica x indica hybrids of rice. Euphytica 62: 219-224.CrossRefGoogle Scholar
  22. Hanson, A.D., W.J. Peacock, L.T. Evans, C.J. Arntzen & G.S. Khush, 1990. Drought resistance in rice. Nature 234: 2.Google Scholar
  23. Hemamalini, G.S., 1997. Molecular mapping of low moisture stress induced response in rice (Oryza sativa L.) roots at peak vegetative stage. M.Sc. (Agri.) Thesis submitted to the University of Agricultural Sciences. GKVK, Bangalore 560 065, India.Google Scholar
  24. Huang, N., S.R. McCouch, S. Mew, A. Parco & E. Guiderdoni, 1994. Development of an RFLP map from a double haploid population in rice. Rice Genetics Newsletter 11: 134-137.Google Scholar
  25. Huang, N., A. Parco, T. Mew, G. Magpantay, S.R. McCouch, E. Guiderdoni, J. Xu, P. Subudhi, R.E. Angeles & G.S. Khush, 1997. RFLP mapping of isozymes, RAPD and QTLs for brown plant hopper resistance in a doubled haploid rice population. Mol Breed 3: 105-113.CrossRefGoogle Scholar
  26. Ingram, K.T., F.D. Bueno, O.S. Namuco, E.B. Yambao & C.A. Beyrouty, 1994. Rice root traits for drought resistance and their genetic variation. In: G.J.D. Kirk (Ed.), Rice Roots: Nutrient and Water Use, pp. 67-70. International Rice Research Institute, Manila, The Philippines.Google Scholar
  27. International Rice Research Institute, 1980. Annual report for 1979, IRRI, Los Banos, Philippines: 73-99.Google Scholar
  28. International Rice Research Institute, 1982. Annual report for 1981, IRRI, Los Banos, Philippines: 77-99.Google Scholar
  29. International Rice Research Institute, 1984. Annual report for 1983, IRRI, Los Banos, Philippines: 85-100.Google Scholar
  30. International Rice Research Institute, 1995. Challenges and opportunities in a less favorable ecosystem: Rainfed lowland rice, IRRI information series No. 1 IRRI, Los Banos, Philippines: 8-12.Google Scholar
  31. Kurata, N., Y. Nagamura, A. Yamamoto, Y. Harushima, N. Sue, J. Wu, B.A. Antonnio, A. Shomura, T. Shimizu, S.Y. Lin, T. Inoue, A. Fukuda, T. Shimona, Y. Kuboki, Y. Momma, Y. Umehara, M. Yano, T. Sasaki & Y. Minobe, 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics 8: 365-372.PubMedCrossRefGoogle Scholar
  32. Lander, E.S., 1993. MAPMAKER/EXP 3.0 and MAPMAKER/ QTL 1.1. Whitehead Institute, 9, Cambridge, MA 02142, USA.Google Scholar
  33. Lebreton, C., V. Lazic-Jancic, A. Steed, S. Pekic & S.A. Quarrie, 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46(288): 853-865.Google Scholar
  34. Lilley, J.M., M.M. Ludlow, S.R. McCouch & J.C. O'Toole, 1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47(307): 1427-1436.Google Scholar
  35. Ludlow, M.M. & R.C. Muchow, 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Adv in Agron 43: 107-153.CrossRefGoogle Scholar
  36. McCouch, S.R., G. Kochert, Z.H. Yu, Z.Y Wang, G.S. Khush, W.R. Coffman & S.D. Tanksley, 1988. Molecular mapping of rice chromosomes. Theor Appl Genet 76: 815-829.CrossRefGoogle Scholar
  37. McCouch, S.R., Y.G. Cho, M. Yano, E. Paul, M. Blinstrub, H. Morishima & T. Kinoshita, 1997. Report on QTL Nomenclature, RGN 14: 11-13.Google Scholar
  38. McWilliam, J.R., 1989. The dimensions of drought. In: F.W.G. Baker (Ed.), Drought Resistance in Cereals, pp. 1-11. CAB International, Wallingford, UK.Google Scholar
  39. Nguyen, H.T., R.C. Babu & A. Blum, 1997. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37: 1426-1434.CrossRefGoogle Scholar
  40. O'Toole, J.C., 1989. Breeding for drought resistance in cereals. In: F.W.G. Baker (Ed.), Drought Resistance in Cereals, pp. 107-116. CAB International, Wallingford, UK.Google Scholar
  41. O'Toole, J.C. & T.B. Moya, 1978. Genotypic variation in maintenance of leaf water potential in rice. Crop Sci 18: 873-876.CrossRefGoogle Scholar
  42. Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowitch, S.E. Lincoln & S.D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127: 181-197.PubMedGoogle Scholar
  43. Price, A.H. & A.D. Tomas, 1997. Genetic dissection of root growth in rice (Oryza sativa L.) II: mapping quantitative trait loci using molecular markers. Theor Appl Genet 95: 143-152.CrossRefGoogle Scholar
  44. Puckridge, D.W. & J.C. O'Toole, 1981. Dry matter and grain production of rice, using a line source sprinkler in drought studies. Field Crops Res 3: 303-319.CrossRefGoogle Scholar
  45. Ray, J.D., L. Yu, S.R. McCouch, M.C. Champoux, G. Wang & H.T. Nguyen, 1996. Mapping quantitative trait loci associated with root penetration abililty in rice. Theor Appl Genet 92: 627-633.CrossRefGoogle Scholar
  46. Saito, A., M. Yano, N. Kishimoto, M. Nakagahra, A. Yoshimura, K. Saito, S. Kuhara, Y. Ukai, M. Kawase, T. Nagamine, S. Yoshimura, O. Ideta, R. Ohsawa, Y. Hayano, M. Iwata & M. Sugiura, 1991. Linkage map of restriction fragment polymorphism loci in rice. Japan J Breed 41: 665-670.Google Scholar
  47. Salam, M.A. & S. Subramanian, 1988. Relationship between root weight and plant characters in rice in different seasons. Indian J of Agril Sci 58(9): 710.Google Scholar
  48. Shahid, M., T. Latif, N. Iqbal & M.A. Khan, 1994. Genetic studies on drought tolerance in rice. Sarhad Journal of Agriculture 10(6): 617-674.Google Scholar
  49. Stuber, C.W., S.E. Lincoln, D.W. Wolff, T. Helentjaris & E.S. Lander, 1992. Identification of genetic factors contributing to heterosis in hybrids from two elite maize inbred lines using molecular markers. Genetics 132: 823-839.PubMedGoogle Scholar
  50. Xiao, J., J. Li, L. Yuan & S.D. Tanksley, 1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92: 230-244.CrossRefGoogle Scholar
  51. Yadav, R.S., B. Courtois & N. Huang, 1997. Mapping genes controlling root morphology in a doubled haploid population of indica x japonica cross of rice. Theor Appl Genet 94: 619-632.CrossRefGoogle Scholar
  52. Yamaguchi-Shinozaki, K. & K. Shinozaki, 1997. Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327-334.PubMedCrossRefGoogle Scholar
  53. Yoshida, S. & S. Hasegawa, 1982. The rice root system: its development and function. In: Drought Resistance in Crops with Emphasis on Rice. IRRI, Philippines: 53-68.Google Scholar
  54. Zheng, H.G.,M.S. Pathan, R.C. Babu, L. Ali, N. Huang, B. Courtois & H.T. Nguyen, 1996. Molecular mapping of QTLs associated with root penetration ability in rice. Plant Genome IV, The international conference on the status of Plant Genome Research, San Diego, CA. Abstract no. P125.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • G.S. Hemamalini
    • 1
  • H.E. Shashidhar
    • 1
  • Shailaja Hittalmani
    • 1
  1. 1.Department of Genetics and Plant Breeding, College of AgricultureUniversity of Agricultural Sciences, GKVKBangaloreIndia

Personalised recommendations