Journal of Applied Electrochemistry

, Volume 30, Issue 1, pp 101–105

Bipolar plate materials for solid polymer fuel cells

  • D.P. Davies
  • P.L. Adcock
  • M. Turpin
  • S.J. Rowen
Article

Abstract

The interfacial ohmic losses between the bipolar plate and the MEA can significantly reduce the overall power output from a SPFC. For graphitic bipolar plate materials, these losses are insignificant relative to stainless steel, where the existence of a passive film on the surface greatly reduces electrical conductivity. In this paper we have evaluated different bipolar plate materials, and present long-term fuel cell data for Poco® graphite, titanium, 316 and 310 stainless steel. The properties of the passive film on the surface of 316 and 310 stainless steel are markedly different. Although both were adequately corrosion resistant in a fuel cell environment, 310 tended to produce higher fuel cell performance and like 316, no degradation was observed after 1400 h testing. Analysis of the passive film indicated that this increased performance was related to the decreased thickness of the oxide film.

bipolar plate passive film solid polymer fuel cell stainless steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.R. Ralph and G.A. Hards, Chem. Indust. (May 1968), 334.Google Scholar
  2. 2.
    B. Bahar, Abstracts, ‘Commercialising Fuel Cell Vehicles’ (Chicago Sept. 1996).Google Scholar
  3. 3.
    A.J. Appleby and F.R. Foulkes, ‘Fuel Cell Handbook’ (Krieger, 1993).Google Scholar
  4. 4.
    M.G.S. Fereira and C.A. Melendres, ‘Electrochemical and Optical Techniques for the Study and Monitoring of Metallic Corrosion’ (Kluwer Academic, Dordrecht, 1991), p. 289.Google Scholar
  5. 5.
    C.E. Borrini-Bird, J. Power Sources 61 (1996) 33.Google Scholar
  6. 6.
    K. Prater, J. Power Sources 51 (1994) 129.Google Scholar
  7. 7.
    R.K.A.M. Mallant, F.G.H. Koene, C.W.G. Verhoeve and A. Ruiter, Extended Abstracts, Fuel Cell Seminar, San Diego, CA (1994), p. 503.Google Scholar
  8. 8.
    C. Zawodzinski, M.S. Wilson and S. Gottesfeld, Extended Abstracts, Fuel Cell Seminar, Orlando, FA (1996).Google Scholar
  9. 9.
    K. Prater, J. Power Sources 61 (1996) 105.Google Scholar
  10. 10.
    R. Hornung and G. Kappelt, J. Power Sources 72 (1998) 20.Google Scholar
  11. 11.
    N. Ramasubramanium, N. Preocanin and R.D. Davidson, J. Electrochem. Soc. 132 (1985) 793.Google Scholar
  12. 12.
    I. Olefjord and L. Wegrelius, Corros. Sci. 31 (1990) 89.Google Scholar
  13. 13.
    A.M.P. Simões, M.G.S. Ferraria, G. Lorang and Da Cunha Belo, Electrochim. Acta 36 (1991) 315.Google Scholar
  14. 14.
    G. Lorang, Da Cunha Belo, A.M.P. Simões and M.G.S. Ferraria, J. Electrochem. Soc. 141 (1994) 3347.Google Scholar
  15. 15.
    M.G.S. Ferraria,. T. Moura e Silva, A. Catarina, M. Pankuch and C.A. Melendres, J. Electrochem. Soc. 139 (1992) 3146.Google Scholar
  16. 16.
    Source Book on Stainless Steel, American Society for Metals, (1976).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • D.P. Davies
    • 1
  • P.L. Adcock
    • 1
  • M. Turpin
    • 1
  • S.J. Rowen
    • 1
  1. 1.Fuel Cell Research Group, Department of AAETSLoughborough University, LoughboroughLeicestershireGreat Britain

Personalised recommendations