Advertisement

Hydrobiologia

, Volume 417, Issue 1, pp 37–42 | Cite as

Interpopulation differentiation within C. kolensis and C. strenuus strenuus (Crustacea: Copepoda): evidence from cytogenetic methods

  • A. K. Grishanin
  • A. P. Akif'ev
Article

Abstract

Comparisons of behavior of chromosomes and characteristics of eliminated chromatin during anaphase of chromatin diminution divisions were made of Russian and German populations of Cyclops kolensis and Cyclops strenuus strenuus. Differences in cytogenetic features included timing and amount of eliminated chromatin. Differences were also marked in duration of chromatin diminution, as well as timing and location of eliminated DNA between Russian and German populations of C. strenuus strenuus. In contrast to the German population of C. strenuus, the Russian population of C. strenuus strenuus did not exhibit gonomery.

taxonomy cytogenetic methods Cyclops kolensis Cyclops strenuus strenuus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akifiev, A. P. & A. K. Grishanin, 1993. Some biological aspects of the chromatin diminution. J Obsh. Biol. (J. of General Biology) 54: 5–16 (in Russian).Google Scholar
  2. Akifiev, A. P., I. Ya. Beliaev, A. K. Grishanin, S. V. Degtjarjov & G. A. Khudolij, 1996. Chromosome aberrations, diminution of chromatin and their significance for understanding of the molecular genetical organization of eucaryotic chromosomes. Radiacionnaya Biologiya. Radioecologiya 36: 789–797 (in Russian).Google Scholar
  3. Beermann, S., 1959. Chromatin diminution bei Copepoden. Chromosoma 10: 504–514.Google Scholar
  4. Beermann, S., 1966. A quantitative study of chromatin diminution in embryonic mitosis of Cyclops furcifer. Genetics 54: 567–576.Google Scholar
  5. Beermann, S., 1977. The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60: 297–344.Google Scholar
  6. Beermann, S., 1984. Circular and linear structures in chromatin diminution of Cyclops. Chromosoma 89: 321–328.Google Scholar
  7. Beermann, S. & G. F. Meyer, 1980. Chromatin rings as products of chromatn diminution in Cyclops furcifer. Chromosoma 77: 277–284.Google Scholar
  8. Braun, M., 1909. Die spezifischen Chromosomenzahlen der einheimischen Arten der Gattung Cyclops. Arch. Cellforsch. 3: 449–482.Google Scholar
  9. Chambers, R., 1912. Egg maturation, chromosomes and spermatogenesis in Cyclops. Univ. Toronto Stud. Biol. Ser. 14: 1–37.Google Scholar
  10. Chinnappa, C. C., 1980. Bivalent forming race of Mesocyclops edax (Copepoda, Crustacea). Can. J. Genet. Cytol. 22: 427–431.Google Scholar
  11. Chinnappa, C. C. & R. Victor, 1977. Cytotaxonomic studies on some cyclopoid copepods (Copepoda, Crustacea) from Ontario, Canada. Can. J. Zool. 57: 1597–1604.Google Scholar
  12. Decosse, J. J. & N. Aiello, 1966. Feulgen hydrolysis effect of acid and temperature. J. Histochem. Cytochem. 14: 601–604.Google Scholar
  13. Dorward, H. M., 1995. A Study of Chromatin Diminution in the Freshwater Family of Free-Living Cyclopidae. MS. Thesis, James Madison University, United States.Google Scholar
  14. Dorward, H. M. & G. A. Wyngaard, 1997. Variability and pattern of chromatin diminution in the freshwater Cyclopidae ( Crustacea: Copepoda). Arch. Hydrobiol. Suppl. 107: 447–465.Google Scholar
  15. Einsle, U., 1962. Die Bedeutung der Chromatin-Diminution fur die Systematik der Gattung Cyclops s. str. Naturwiss. 49: 90.Google Scholar
  16. Einsle, U., 1963. Untersuchungen über die Variabilitat von Cyclops furcifer CLAUS. Crustaceana 5: 193–204.Google Scholar
  17. Einsle, U., 1964. Die Gattung Cyclops s. str. im Bodensee. Arch. Hydrobiol. 60: 133–139.Google Scholar
  18. Einsle, U., 1975. Revision der Gattung Cyclops s. str., spezell der abyssorum-Gruppe. Mem. 1st. ital. Idrobiol. 32: 57–219.Google Scholar
  19. Einsle, U., 1977. Untersuchungen zum Auftreten von Acanthocyclops robustus (Crust.Cop.) im Bodensee-Obersee. Arch. Hydrobiol. 79: 382–396.Google Scholar
  20. Einsle U., 1993. Crustacea: Copepoda: Calanoida und Cyclopoida. Subwasserfauna bon Mitteleuropa. Bd.8/Heft 4/Teil 1:1–209. Gustav Fischer Verlag, Stutgart: 209 pp.Google Scholar
  21. Einsle, U., 1994. Cyclops kikuchii Smirnov, 1932 (Copepoda, Cyclopoida), eine selbstandige art aus suddeutschen Gewassern. Crustaceana 66: 240–246.Google Scholar
  22. Einsle, U., 1996. Cyclops heberti n sp. and Cyclops singularis n sp., two new species within the genus Cyclops ('strenuus-subgroup') (Crust. Copepoda) from ephemeral ponds in southern Germany. Hydrobiologia 319: 167–177.Google Scholar
  23. Escribano, R., I. A. McLaren & W. C. M. Klein Breteler, 1992. Innate and acquired variation of nuclear DNA contents of marine copepods. Genome 35: 602–610.Google Scholar
  24. Grishanin, A. K., 1995. Comparative study of chromosomes and interphase nuclei in embryonic cells of Cyclops kolensis (Copepoda, Crustacea) before and after chromatin diminution, using electron microscopy. Russ. J. develop. Biol. 26: 153–158 (in Russian).Google Scholar
  25. Grishanin, A. K., 1996a. To problem cytotaxonomy of the species Cyclops strenuus and Cyclops kolensis (Copepoda, Cyclopidae). Zool. Zh. 75: 1887–1891 (in Russian).Google Scholar
  26. Grishanin, A. K., 1996b. Application of the scanning electron microscopy for examining eliminated chromatin granules in cells of Cyclops kolensis (Crustacea, Copepoda). Cytology 38: 1115–1117 (in Russian).Google Scholar
  27. Grishanin, A. K. & A. P. Akifiev, 1993. Chromatine diminution and organization of chromosomes of Cyclops strenuus strenuus (Crustacea, Copepoda). Soviet Genetics 29: 810–816. (in Russian).Google Scholar
  28. Grishanin, A. K., V. Y. Brodskii & A. P. Akifiev, 1994. Somatic cells of Cyclops strenuus (Copepoda, Crustacea) lose more than 90% of genome in course of the chromatin diminution. Dokl. biol. Sci. 338: 505–506 (in Russian).Google Scholar
  29. Grishanin, A. K., G. A. Khudolii, G. O. Shayhaev, V. Y. Brodskii, V. B. Makarov & A. P. Akifiev, 1996. Chromatin diminution in Cyclops kolensis (Copepoda, Crustacea) is a unique example of genetic engineering in nature. Russ. J. Genet. 32: 424–430 (in Russian).Google Scholar
  30. Haecker, V., 1892. Die Eibildung beiCyclops u. Canthocamptus. Zool. Jahrb., Anat. 5: 211–248.Google Scholar
  31. Kiknadze, I. I., 1972. Functional organization of chromosomes, Nauka, Leningrad, 212 pp (in Russian).Google Scholar
  32. Kiknadze, I. I. & E. S. Beliaeva, 1965. The structure of nucleolus in early embryogenesis. Genetika. 3: 11–14 (in Russian).Google Scholar
  33. Kochina, Y. M., 1987. Cytotaxonomical study of Cyclops of group Acanthocyclops 'americanus-vernalis' (Crustacea, Copepoda). Vestn. zool. 3: 7–11 (in Russian).Google Scholar
  34. Kochina, Y. M. & V. I. Monchenko, 1986. About species differences of Cyclops kikuchii (Crustacea, Cyclopidae). Vestn. zool. 1: 15–18 (in Russian).Google Scholar
  35. Leech, D. M. & G. A. Wyngaard, 1996. Timing of chromatin diminution in the Cyclopidae (Crustacea: Copepoda). J. Crust. Biol. 16: 496–500.Google Scholar
  36. McLaren, I. A., S. M. Woods & J. R. Shea, Jr., 1966. Polyteny: a source of cryptic speciation among copepods. Science 153: 1641–1642.Google Scholar
  37. McLaren, I. A. & D. J. Marcogliese, 1983. Similar nucleus numbers among copepods. Can. J. Zool. 61: 721–724.Google Scholar
  38. McLaren, I. A., J. M. Sevigny & C. J. Corkett, 1988. Body sizes, developement rates and genome sizes among Calanus species. Hydrobiologia 167/168: 275–284.Google Scholar
  39. McLaren, I. A., J. M. Sevigny & B. W. Frost, 1989. Evolutionary and ecological significance of genome sizes in the copepod genus Pseudocalanus. Can. J. Zool. 67: 565–569.Google Scholar
  40. Matscheck, H., 1910. Uber Eirefung und Eiablage bei Copepoden. Arch. Zellforsch. 5: 37–119.Google Scholar
  41. Monchenko V. I., 1974. The Fauna of Ukraine, 27(3) Naukova Dumka, Kiev: 449 pp. (in Ukraine).Google Scholar
  42. Monchenko V. I. & T. I. Tavolzhanova, 1976. Concept of biological species as applied to Cyclopidae (Crustacea) systematics. Zh. Obsh. Biol. 37: 563–574 (in Russian).Google Scholar
  43. Purasjoki K. & H. Viljamaa, 1984. Acanthocyclops robustus (Copepoda, Cyclopoida) in plankton of the Helsinki sea area, and a morphological comparison between A. robustus and A.vernalis. Finn. mar. Res. 250: 33–44.Google Scholar
  44. Rasch, E. M. & G. A. Wyngaard, 1997a. Analysis of DNA levels during gonomery in early cleavage divisions of the freshwater copepod Mesocyclops edax. Microscopy and Microanalysis meetings: Proc. Microsc. Microanal. 3: 191.Google Scholar
  45. Rasch, E. M. & G. A. Wyngaard. 1997b. Evidence for gonomery during embryogensis in the fresh-water copepods, Mesocyclops edax. Mol. Biol. Cell 8: 112A.Google Scholar
  46. Rasch, E. M., G. A. Wyngaard & E. McCracken, 1993. Genome sizes in a freshwater copepod. J. Histochem. Cytochem. 41: 1116.Google Scholar
  47. Rückert, J., 1895. Zur Befruchtung von Cyclops strenuus (Fisch). Anat. Anz. 10: 708–725.Google Scholar
  48. Rüsch, M. E., 1960. Untersuchungen uber Geschlechtsbestimmung mechanismen bei Copepoden Chromosoma 11: 419–432.Google Scholar
  49. Robins, J. H. & I. A. McLaren, 1981. Unusual variations in nuclear DNA contents in the marine copepod Pseudocalanus. Can. J. Genet. Cytol. 24: 529–540.Google Scholar
  50. Standiford, D. M., 1988. The development of a large nucleolus during oogenesis in Acanthocyclops vernalis (Crustacea, Copepoda) and its possible relationship to chromatin diminution. Biol. Cell. 63: 35–40.Google Scholar
  51. Standiford, D. M., 1989. The effect of chromatin diminution on the pattern of C-banding in the chromosomes of Acanthocyclops vernalis Fischer (Copepoda: Crustacea). Genetika 79: 207–214.Google Scholar
  52. Terpilowska, B., 1971. Quantitative investigations of DNA in early embryogenesis of Acanthocyclops gigas (Claus). Zool. pol. 21: 163–175.Google Scholar
  53. Terpilowska, B., 1974. The structure and behavior of chromosomes in embryonic development of Acanthocyclops gigas (Claus). Zool. pol. 24: 11–28.Google Scholar
  54. Terpilowska, B., 1977. Cytological and cytochemical investigations of the early stages of Acanthocyclops viridis (Jurine) embryogenesis. Zool. pol. 26: 483–516.Google Scholar
  55. Wyngaard, G. A., 1986. Genetic differentiation of life history traits in populations of Mesocyclops edax (Crustacea: Copepoda). Biol. Bull. (Woods Hole) 170: 279–295.Google Scholar
  56. Wyngaard, G. A. & C. C. Chinnappa, 1982. General biology and cytology of cyclopoids. In: Harrison, R. W. & R. C. Cowden (eds), Developmental Biology of Freshwater Invertebrates. Alan R. Liss, New York.: 485–533.Google Scholar
  57. Wyngaard, G. A., I. A. McLaren, M. M. White & J.-M. Sevigny, 1995. Unusually high numbers of ribosomal RNA genes in copepods (Arthropoda: Crustacea) and their relationship to genome size. Genome 38: 97–104.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. K. Grishanin
    • 1
  • A. P. Akif'ev
    • 2
  1. 1.Institute for Biology of Inland WatersRussian Academy of SciencesBorok, Yaroslavlskaya OblastRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations