Advertisement

Hydrobiologia

, Volume 411, Issue 0, pp 145–159 | Cite as

Stable isotope analyses of benthic organisms in Lake Baikal

  • Koichi Yoshii
Article

Abstract

Stable isotope ratios of carbon and nitrogen were used successfully to elucidate the biogeochemical and ecological frameworks of the trophic structure of benthic organisms in Lake Baikal, Siberia. Analysis of the benthic animals showed a considerable variance in both carbon and nitrogen stable isotope ratios. Two main primary producers of benthic plants and planktonic organic matter were clearly differentiated by δ13C, and thus the diets of these two primary producers' groups could be analyzed with the use of a two source mixing model. The trophic position of each benthic animal was estimated by the analysis of δ15N. Contrasting characteristics between food webs in shallow and deep benthic areas were clearly observed on the δ13C – δ15N map. Food webs in shallow benthic areas were complex, and many primary producers and various animals were present with diverse isotope distributions. In contrast, food webs in deep benthic areas were composed of single organic matter origin exhibiting simple predator and prey relationships. Both δ13C and δ15N values of benthic gammarids were correlated with the sampling water depth. A trend of δ13C decrease and δ15N enrichment was observed with increasing water depth. The stable isotope ratios of the benthic animals indicated that the complexity of the food web structure in their ecosystem decreased as the depth of the water increased.

δ13δ15Lake Baikal food webs stable isotopes feeding behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasyev, A. N., 1960. The water budget of Lake Baikal. Tr. Baik. Limnol. Sta. Akad. Nauk SSSR Vost.-Sib. Fil. 18: 155-241 (in Russian).Google Scholar
  2. Abelson, P. H. & T. C. Hoering, 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc. natn. Acad. Sci. U. S. A. 47: 623-632.Google Scholar
  3. Angradi, T. R., 1994. Trophic linkages in the lower Colorado River: multiple stable isotope evidence. J. n. am. Benthol. Soc. 13: 479-495.Google Scholar
  4. Bazikalova, A. I., 1945. Amphipoda of Baikal. Acad. Nauk CCCR, Trudy Baikal. Limnol. St. 11: 440 pp (in Russian).Google Scholar
  5. Bekman, M. I., 1984. Deep-water fauna of amphipods. In Linevich A. A. (ed.), Systematics and Evolution of Invertebrates in Baikal. Akad. Nauk CCCR, Novosibirsk: 114-123 (in Russian).Google Scholar
  6. Bootsma H. A., R. E. Hecky, R. H. Hesslein & G. F. Turner, 1996. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analyses. Ecology 77: 1286-1290.Google Scholar
  7. Degens, E. T., M. Behrendt, B. Gotthardt & E. Reppmann, 1968. Metabolic fractionation of carbon isotopes in marine plankton-II. Data on samples collected off the coast of Peru and Ecuador. Deep Sea Res. 15: 11-20.Google Scholar
  8. DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42: 495-506.Google Scholar
  9. DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45: 341-351.Google Scholar
  10. Descolas-Gros, C. & M. Fontugne, 1990. Stable carbon isotope fractionation by marine phytoplankton during photosynthesis. Pl. Cell Envir. 13: 207-218.Google Scholar
  11. Doohan, M. E. & E. H. Newcomb, 1976. Leaf ultrastructure and δ 13C values of three seagrasses from the Great Barrier Reef. Aust. J. Plant Physiol. 3: 9-23.Google Scholar
  12. Estep M. L. & S. Vigg, 1985. Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan Lake system, Nevada. Can. J. Fish. aquat. Sci. 42: 1712-1719.Google Scholar
  13. Fry, B., W. L. Jeng, R. S. Scalan, P. L. Parker & J. Baccus, 1978. δ 13C food web analysis of a Texas sand dune community. Geochim. Cosmochim. Acta 42: 1299-1302.Google Scholar
  14. Fry, B. & P. L. Parker, 1979. Animal diet in Texas seagrass meadows: δ 13C evidence for the importance of benthic plants. Estuar. coast. mar. Sci. 8: 499-509.Google Scholar
  15. Fry, B. & C. Arnold, 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 54: 200-204.Google Scholar
  16. Fry, B., R. Lutes, M. Northam, P. L. Parker & J. Ogden, 1982. A 13C/12C comparison of food webs in Caribbean seagrass meadows and coral reefs. Aquat. Bot. 14: 389-398.Google Scholar
  17. Fry, B., 1988. Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnol. Oceanogr. 33: 1182-1190.Google Scholar
  18. Gormly, J. R. & W. M. Sackett, 1977. Carbon isotope evidence for the maturation of marine lipids. Adv. Org. Geochem. 1975: 321-340.Google Scholar
  19. Haines, E. B., 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants and soils in a salt marsh. Limnol. Oceanogr. 21: 880-883.Google Scholar
  20. Haints, E. B. & C. L. Montague, 1979. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60: 48-56.Google Scholar
  21. Hobson K. A. & H. E. Welch, 1992. Determination of trophic relationships within a high Arctic marine food web using _ 13C and δ 15N analysis. Mar. Ecol. Prog. Ser. 84: 9-18.Google Scholar
  22. Kamaltynov, R. M., 1992. On current states of the systematics of the Lake Baikal amphipods (Crustacea, Amphipoda). Zool. J. 71: 24-31 (in Russian).Google Scholar
  23. Kiyashko, S. I.,A. M. Mamontov & M. G. Chernyayev, 1991. Analysis of nutritional relations in the Lake Baikal fishes from the ratios of stable carbon isotopes. Dokl. Akad. Nauk USSR 318: 1268-1271 (in Russian).Google Scholar
  24. Kling, G. W., B. Fry & W. J. O'Brien, 1992. Stable isotopes and planktonic structure in Arctic lakes. Ecology 73: 561-566.Google Scholar
  25. Kozhov, M., 1963. Lake Baikal and its life. Dr W. Junk Publishers, The Hague: 344 pp.Google Scholar
  26. Maddox, J., 1989. Baikal centre takes step forward. Nature 341: 481.Google Scholar
  27. McConnaughey, T. & C. P. McRoy, 1979. 13C label identifies eelgrass (Zostera marina) carbon in an Alaskan estuarine food web. Mar. Biol. 53: 263-269.Google Scholar
  28. McMillan, C., P. L. Parker & B. Fry, 1980. 13C/12C ratios in seagrass. Aquat Bot. 9: 247-270.Google Scholar
  29. McMillan, C. & B. N. Smith, 1982. Comparison of δ 13C values for seagrasses in experimental cultures and in natural habitats. Aquat Bot. 14: 381-387.Google Scholar
  30. Minagawa, M., D. A. Winter & I. R. Kaplan, 1984. Comparison of Kjeidahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Anal. Chem. 56: 1859-1861.Google Scholar
  31. Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim. Cosmochim. Acta 48: 1135-1140.Google Scholar
  32. Nichols, P. D., D.W. Klumpp & R. B. Johns, 1985. A study of food chains in seagrass communities III. Stable carbon isotope ratios. Aust. J. mar. Freshwat. Res. 36: 683-690.Google Scholar
  33. Park, R. & S. Epstein, 1961. Metabolic fractionation of 13C and 12C in plants. Plant Physiol. 36: 133-138.Google Scholar
  34. Parker, P. L., 1964. The biogeochemistry of the stable isotopes of carbon in a marine bay. Geochim. Cosmochim. Acta 28: 1155-1164.Google Scholar
  35. Rau, G. H., 1980. Carbon-13/carbon-12 variation in subalpine lake aquatic insects: food source implications. Can. J. Fish. aquat. Sci. 37: 742-746.Google Scholar
  36. Rau, G. H., 1981. Hydrothermal vent clam and tube worm 13C/12C: Further evidence of nonphotosynthetic food sources. Science 213: 338-340.Google Scholar
  37. Rau, G. H., A. J. Mearns, D. R. Young, R. J. Olson, H. A. Schafer & I. R. Kaplan, 1983. Animal 13C/12C correlates with trophic levels in pelagic food webs. Ecology 64: 1314-1318.Google Scholar
  38. Sideleva, V. G. & I. V. Mechanikova, 1990. Feeding preference and evolution of the Cottoid of the Lake Baikal. Proc. Zool. Inst., Leningrad 222: 144-161 (in Russian).Google Scholar
  39. Sideleva, V. G., V. A. Fiakov & A. L. Novitskii, 1992. Swimming behavior and morphology of secondarily pelagic cottoid fish (Cottoidei) in Lake Baikal. Vopr. Ikhtiol. 32: 138-143 (in Russian).Google Scholar
  40. Stewart, J. M., 1990. Baikal's hidden depths. New Scientist 23 June: 42-46.Google Scholar
  41. Votintsev, K. K., 1985. Main features of the hydrochemistry of Lake Baikal. Wat. Res. (Engl. Transl. Vodnye Resursy) 12: 106-116.Google Scholar
  42. Wada, E., 1980. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In Goldberg, E. D., Y. Horibe & K. Saruhashi (eds), Isotope Marine Chemistry. Tokyo, Uchida Rokakuho: 375-398.Google Scholar
  43. Wada, E., M. Terazaki, Y. Kabaya & T. Nemoto, 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Res. 34: 829-841.Google Scholar
  44. Weiss, R. F., E. C. Carmack & V. M. Koropalov, 1991. Deep-water renewal and biological production in Lake Baikal. Nature 349: 665-669.Google Scholar
  45. Yoshii, K., N.G. Melnik, O.A. Timoshkin, N.A. Bondarenko, P.N. Anoshko, T. Yoshioka & E. Wada, 1999. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol. Oceanogr. 44: 502-511.Google Scholar
  46. Yoshioka T., E. Wada & H. Hayashi, 1994. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75: 835-846.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Koichi Yoshii
    • 1
  1. 1.Center for Ecological ResearchKyoto UniversityHirano, Kamitanokami, OtsuJapan

Personalised recommendations