Foundations of Physics

, Volume 30, Issue 12, pp 2125–2133 | Cite as

Quasiclassical Theory of Phase Relaxation by Gauge Field Fluctuations

  • Peter Wölfle


The quasiclassical theory in terms of Feynman path integrals is used to calculate the decay of the Cooperon amplitude caused by transverse gauge field fluctuations in a disordered electron system. It is found that the phase relaxation rate in two dimensions varies linearly with the temperature as in the more common case of electric field fluctuations, but is proportional to the conductance rather than the resistance. A logarithmic correction factor is found in comparison to an earlier qualitative estimate.


Correction Factor Relaxation Rate Electron System Path Integral Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).Google Scholar
  2. 2.
    L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, Pis'ma Zh. Eksp. Teor. Fiz. 30, 248 (1979) [JETP Lett. 30, 248 (1979)].Google Scholar
  3. 3.
    B. L. Altshuler and A. G. Aronov, in Electron- Electron Interactions in Disordered Systems, A. L. Efros and M. Pollak, eds. (North-Holland, Amsterdam, 1985), p. 1.Google Scholar
  4. 4.
    S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).Google Scholar
  5. 5.
    P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).Google Scholar
  6. 6.
    L. Ioffe and A. Larkin, Phys. Rev. B 39, 8988 (1989).Google Scholar
  7. 7.
    N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 64, 2550 (1990); P. A. Lee and N. Nagaosa, Phys. Rev. B 46, 5621 (1992).Google Scholar
  8. 8.
    B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).Google Scholar
  9. 9.
    A. G. Aronov and P. Wölfle, Phys. Rev. B 50, 16574 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Peter Wölfle
    • 1
  1. 1.Institut für Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheGermany

Personalised recommendations