, Volume 406, Issue 0, pp 243–251 | Cite as

Decoupling of fission and regenerative capabilities in an asexual oligochaete

  • Alexandra E. Bely


Agametic reproduction by fission has evolved numerous times in the Annelida. In this group, as well as others, the developmental processes of fission appear to be based on those of regeneration. Thus far, all fissiparous annelids whose regenerative abilities have been investigated fully are capable of regenerating both anteriorly and posteriorly. However, in this paper, I describe a unique exception to this association between fission and regenerative abilities. Regeneration experiments demonstrate that the fissiparous annelid Paranais litoralis (Oligochaeta: Naididae) has lost the capacity for full anterior regeneration. The four anterior segments of P. litoralis are produced routinely during each round of fission, yet this species is incapable of producing these same segments by anterior regeneration. I propose that fissiparous reproduction, possibly coupled with a low susceptibility to amputation in nature, may have relaxed selection for anterior regeneration in P. litoralis. The decoupling of fission and regenerative abilities suggests that some steps in the developmental trajectories that lead to fission and regeneration may have diverged in this species.

anterior regeneration evolution fission asexual reproduction Naididae Annelida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, M., 1902. Beiträge zur Kenntnis der Regenerationsvorgänge bei den limicolen Oligochäten. Z. wiss. Zool. 1: 1–74.Google Scholar
  2. Adiyodi, K. G. & R. G. Adiyodi, 1993. Reproductive Biology of Invertebrates, Vol. 6. Asexual Propagation and Reproductive Strategies. John Wiley and Sons, West Sussex, 410 pp.Google Scholar
  3. Barr, H. J., 1964. Regeneration and natural selection. Am. Nat. 98: 183–186.Google Scholar
  4. Berrill, N. J., 1952. Regeneration and budding in worms. Biol. Rev. 27: 401–438.Google Scholar
  5. Bouguenec, V. & N. Giani, 1989. Les oligochètes aquatique en tant que proies des invertébrés et des vertébrés: une revue. Acta Oecol. 10: 177–196.Google Scholar
  6. Brinkhurst, R. O., 1986. Guide to the freshwater aquatic microdrile oligochaetes of North America. Can. Spec. Publ. Fish. aquat. Scis 84: 1–259.Google Scholar
  7. Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic Oligochaeta of the World. Oliver and Boyd, Edinburgh, 860 pp.Google Scholar
  8. Brondsted, H. V., 1969. Planarian Regeneration. Pergamon Press, Braunschweig, 276 pp.Google Scholar
  9. Brusca, R. C. & G. J. Brusca, 1990. Invertebrates. Sinauer, Sunderland (MA), 922 pp.Google Scholar
  10. Christensen, B., 1984. Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia 115: 91–95.Google Scholar
  11. Chu, J. & S. Pai, 1944. The relations between natural fission and regeneration in Stylaria fossularis (Annelida). Physiol. Zool. 17: 159–166.Google Scholar
  12. Consoli, L., 1923. La rigenerazione in rapporto con la strobilazione negli Oligocheti limicoli. Bull. Ist. zool. Palermo 1: 23–47.Google Scholar
  13. Dehorne, L., 1916. Les naïdimorphes et leur reproduction asexuée. Arch. Zool. exp. gén. 56: 25–157.Google Scholar
  14. Drewes, C. D. & M. J. Zoran, 1989. Neurobehavioral specializations for respiratory movements and rapid escape from predators in posterior segments of the tubificid Branchiura sowerbyi. In J. L. Kaster (ed.), Aquatic Oligochaete Biology, Hydrobiologia/Dev. Hydrobiol. 180: 65–71.Google Scholar
  15. Elder, D., 1979. Why is regenerative capacity restricted in higher organisms? J. theor. Biol. 81: 563–568.PubMedGoogle Scholar
  16. Galloway, T. W., 1899. Observations on non-sexual reproduction in Dero vaga. Bull. Mus. comp. Zool. 35: 115–140.Google Scholar
  17. Gates, G. E., 1927. Regeneration in a tropical earthworm Perionyx excavatus E. Perr. Biol. Bull. 53: 351–364.Google Scholar
  18. Giese, A. C. & J. S. Pearse, 1975. Reproduction of Marine Invertebrates. Academic Press, New York, vol. I–IX.Google Scholar
  19. Goss, R. J., 1969. Principles of Regeneration. Academic Press, New York, 287 pp.Google Scholar
  20. Harper, E. H., 1904. Notes on regulation in Stylaria lacustris. Biol. Bull. 6: 173–190.Google Scholar
  21. Hartl, D. L. & A. G. Clark, 1989. Principles of Population Genetics, 2nd edn. Sinauer Associates, Sunderland (MA), 682 pp.Google Scholar
  22. Harvey, P. H. & M. D. Pagel, 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, New York, 239 pp.Google Scholar
  23. Herlant-Meewis, H., 1946. Contribution a l'étude de la régénération chez les oligochètes: reconstitution du germen chez Lumbricillus lineatus (Enchytraeides). Arch. Biol. 57: 197–306.Google Scholar
  24. Herlant-Meewis, H., 1953. Contribution a l'étude de la régénération chez les oligochètes aeolosomatidae. Ann. Soc. r. zool. Belg. 84: 117–161.Google Scholar
  25. Hyman, L. H., 1916. An analysis of the process of regeneration in certain microdrilous oligochaetes. J. exp. Zool. 20: 99–163.Google Scholar
  26. Hyman, L. H., 1938. The fragmentation of Nais paraguayensis. Physiol. Zool. 11: 126–143.Google Scholar
  27. Hyman, L. H., 1940. Aspects of regeneration in annelids. Am. Nat. 74: 513–527.Google Scholar
  28. Kirkwood, T. B. L., 1981. Repair and its evolution: survival versus reproduction. In C. R. Townsend & P. Calow (eds), Physiological Ecology: an Evolutionary Approach to Resource Use. Sinauer Associates, Sunderland (MA): 165–189.Google Scholar
  29. Krecker, F. H., 1910. Some phenomena of regeneration in Limnodrilus and related forms. Z. wiss. Zool. 95: 383–450.Google Scholar
  30. Lasserre, P., 1975. Clitellata. In A. C. Giese & J. S. Pearse (eds), Reproduction of Marine Invertebrates, Vol 3. Annelids and Echiurans. Academic Press, New York: 215–275.Google Scholar
  31. Martínez, D. E., 1993. On Senescence in Asexual Metazoans. Ph.D. Dissertation, State University of New York at Stony Brook, 181 pp.Google Scholar
  32. Morgan, T. H., 1901. Regeneration. Macmillan & Co., London, 316 pp.Google Scholar
  33. Needham, A. E., 1952. Regeneration and Wound-Healing. Barnes & Noble, New York, 152 pp.Google Scholar
  34. Nemec, A. F. L. & R. O. Brinkhurst, 1987. A comparison of methodological approaches to the subfamilial classification of the Naididae (Oligochaeta). Can. J. Zool. 65: 691–707.Google Scholar
  35. O'Brien, J. P., 1946. Studies on the cellular basis of regeneration in Nais paraguayensis, and the effects of X-rays thereon. Growth 10: 25–44.Google Scholar
  36. Ortmann, K., 1921. Ein Beitrag zug Kenntnis der äuβeren postoperativen Regenerationsprozesse bei Stylaria lacustris L. (Nais proboscidea Müll.). Lotos Prague 69: 245–253.Google Scholar
  37. Reichman, O. J., 1984. Evolution of regeneration capabilities. Am. Nat. 123: 752–763.Google Scholar
  38. Rievel, H., 1896. Die Regeneration des Vorderdarmes und Enddarmes bei einigen Anneliden. Z. wiss. Zool. 2: 289–341.Google Scholar
  39. Scadding, S. R., 1977. Phylogenetic distribution of limb regeneration capacity in adult amphibia. J. exp. Zool. 202: 57–68.Google Scholar
  40. Schroeder, P. C. & C. O. Hermans, 1975. Annelida: Polychaeta. In A. C. Giese & J. S. Pearse (eds.), Reproduction of Marine Invertebrates, Vol 3. Annelids and Echiurans. Academic Press, New York: 1–213.Google Scholar
  41. Seys, J., M. Vincx & P. Meire, 1999. Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Schelde estuary (Belgium). Hydrobiologia 406: 119–132.Google Scholar
  42. Shankland, M. & R. M. Savage, 1997. Annelids, the segmented worms. In S. F. Gilbert & A. M. Raunio (eds), Embryology: Constructing the Organism. Sinauer, Sunderland (MA): 219–235.Google Scholar
  43. Singer, M., E. C. Weckesser, J. Geraudie, C. E. Maier & J. Singer, 1987. Open finger tip healing and replacement after distal amputation in Rhesus monkey with comparison to limb regeneration in lower vertebrates. Anat. Embryol. (Berl.) 177: 29–36.PubMedGoogle Scholar
  44. Strathmann, M. F., 1987. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast. University of Washington Press, Seattle, 670 pp.Google Scholar
  45. Van Cleave, C. D., 1929. An experimental study of fission and reconstitution in Stenostomum. Physiol. Zool. 2: 18–58.Google Scholar
  46. Van Cleave, C. D., 1937. A study of the process of fission in the naid Pristina longiseta. Physiol. Zool. 10: 299–314.Google Scholar
  47. Vollrath, F., 1990. Leg regeneration in web spiders and its implications for orb weaver phylogeny. Bull. br. arachnol. Soc. 8: 177–184.Google Scholar
  48. Wagner, G. P. & B. Y. Misof, 1992. Evolutionary modification of regenerative capability in vertebrates: a comparative study on teleost pectoral fin regeneration. J. exp. Zool. 261: 62–78.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Alexandra E. Bely
    • 1
  1. 1.Department of Ecology and EvolutionState University of New York at Stony BrookStony BrookU.S.A.

Personalised recommendations