, Volume 402, Issue 0, pp 255–265 | Cite as

Conservation and innovation in spiralian development

  • Jonathan J. Henry
  • Mark Q. Martindale


It is clear that the spiralian developmental program represents a highly flexible platform for the generation of diverse larval and adult body plans. The widespread occurrence of this pattern of early development attests to its tremendous evolutionary success. Despite the large degree of conservation in the spiral cleavage pattern and other basic aspects of early development, changes in cell fate maps and in the mechanisms of blastomere specification have arisen. While we have learned a great deal about this mode of development, a number of important questions remain to be answered. To what extent do these conditions apply to the lesser studied spiralian phyla? What constraints have led to the preservation of the early spiral cleavage program? How has this developmental program been adapted for the construction of the various spiralian body plans (e.g. the segmental body plans of annelids or to the potential secondary loss of segmentation)? Are most changes associated with the elaboration of these different larval and adult body plans restricted to the late period of development? What molecular/genetic processes underlie this developmental program? Clearly, the spiralian phyla represent an important group of organisms for further studies on development and evolution.

evolution spiral cleavage Spiralia cell lineage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguinaldo, A. M. A., J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff & J. A. Lake, 1997. Evidence for a clade of nematodes, arthropods and other molting animals. Nature 387: 489–493.Google Scholar
  2. Anderson, D. T., 1973. Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford.Google Scholar
  3. Arnold, J. M., 1965. Normal embryonic stages of the squid Loligo pealii. Biol. Bull. 128: 24–32.Google Scholar
  4. Arnold, J. M., 1971. Cephalopods. In G. Reverberi, (ed.), Experimental Embryology of Marine and Freshwater Invertebrates. North Holland Publishing. Co. Chapter 10: 265–311.Google Scholar
  5. Arnolds, W. J. A., J. A. M. van den Biggelaar & N. H. Verdonk, 1983. Spatial aspects of cell interactions involved in the determination of dorsoventral polarity in equally cleaving gastropods and regulative abilities of their embryos, as studied bymicromere deletions in Lymnaea and Patella. W. Roux's Arch. Dev. Biol. 192: 75–85.Google Scholar
  6. Ax, P., 1987. The phylogenetic system. John Wiley and Sons, Chichester, 340 pp.Google Scholar
  7. Ax, P., 1995. Das System der Metazoa I. Ein Lehrbuch der phylogenetischen Systematik. Fischer, Stuttgart, 226 pp.Google Scholar
  8. Bakke, T., 1990. Pogonophora. In Adiyodi, K. G. & R. Adiyodi (eds), Reproductive Biology of Invertebrates, Vol. IV, Part B, John Wiley and Sons, Chichester. 37–48.Google Scholar
  9. Balavoine, G., 1997. The early emergence of platyhelminths is contradicted by the agreement between 18s rRNA and Hox genes data. Evolution 320: 83–94.Google Scholar
  10. Boyer, B. C., 1986. Determinative development in the polyclad turbellarian, Hoploplana inquilina. Int. J. Invert. Reprod. Dev. 9: 243–251.Google Scholar
  11. Boyer, B. C., 1987. Development of in vitro fertilized embryos of the polyclad flatworm, Hoploplana inquilina, following blastomere separation and deletion. W. Roux's Arch. Dev. Biol. 196: 158–164.Google Scholar
  12. Boyer, B. C., 1989. The role of the first quartet micromeres in the development of the polyclad Hoploplana inquilina. Biol. Bull. 177: 338–343.Google Scholar
  13. Boyer, B. C., J. Q. Henry & M. Q. Martindale, 1996a. Dual origins of mesoderm in a basal member of the spiralian clade: cell lineage analyses in the polyclad turbellarian Hoploplana inquilina. Dev. Biol. 179: 329–338.Google Scholar
  14. Boyer, B. C., J. Q. Henry & M. Q. Martindale, 1996b. Modified spiral cleavage: The duet cleavage pattern and early blastomere fates in the acoel turbellarian Neochildia fusca. Biol. Bull. 191: 285–286.Google Scholar
  15. Boyer, B. C., J. Q. Henry & M. Q. Martindale, 1998. The cell lineage of a polyclad turbellarian embryo reveals close similarity to coelomate spiralians. Dev. Biol., 204: 111–123.Google Scholar
  16. Boyer, B. C. & J. Q. Henry, 1998. Evolutionary modifications of the spiralian developmental program. Am. Zool. 38: 621–633.Google Scholar
  17. Conklin, E. G., 1897. The embryology of Crepidula. J. Morph. 13: 1–226.Google Scholar
  18. Costello, D. P. & C. Henley, 1976. Spiralian development: a perspective. Am. Zool. 16: 277–291.Google Scholar
  19. Damen, P., 1994. Cell lineage, and specification of developmental fate and dorsoventral organization in the mollusc Patella vulgata. Thesis Universiteit Utrecht. Cip-Data Koninklijke Bibliotheek, Den Haag.Google Scholar
  20. Damen, P. & W. J. A. G. Dictus, 1994. Cell lineage of the prototroch of Patella vulgata (Gastropoda, Mollusca). Dev. Biol. 162: 364–383.Google Scholar
  21. Dorresteijn, A. W. C., 1990. Quantitative analysis of cellular differentiation during early embryogenesis of Platynereis dumerilii. Roux's Arch. Dev. Biol. 199: 14–30.Google Scholar
  22. Dorresteijn, A. W. C., H. Bornewasser & A. Fischer, 1987. A correlative study of experimentally changed first cleavage and Janus development in the trunk of Platynereis dumerilii (Annelida, Polychaeta). Roux's Arch. Dev. Biol. 196: 51–58.Google Scholar
  23. Eernisse, D. J., J. S. Albert & F. E. Anderson, 1992. Annelida and Arthropoda are not sister taxa: A phylogenetic analysis of spiralian metazoan morphology. Syst. Biol. 41: 305–330.Google Scholar
  24. Field, K. G., G. J. Olsen, G. J. Lane, S. J. Giovannoni & N. R. Pace, 1988. Molecular phylogeny of the animal kingdom. Science 239: 748–753.Google Scholar
  25. Fioroni, P., 1979. Zur Struktur der Pollappen und der Dottermakromeren – eine vergleichende Ñbersicht. Zool. Jb. Anat. 102: 395–430.Google Scholar
  26. Freeman, G. & J. W. Lundelius, 1982. The developmental genetics of dextrality and sinistrality in the gastropod Lymnaea peregra. W. Roux's Arch. Dev. Biol. 191: 69–83.Google Scholar
  27. Freeman, G. & J. W. Lundelius, 1992. Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J. evol. Biol. 5: 205–247.Google Scholar
  28. Furuya, H., K. Tsuneki & Y. Koshida, 1996. The cell lineages of two types of embryos and a hermaphrodite gonad in dycyemid mesozoans. Dev. Growth Diff. 38: 453–463.Google Scholar
  29. Guerrier, P., J. A. M. van den Biggelaar, C. A. M. van Dongen & N. H. Verdonk, 1978. Significance of the polar lobe for the determination of dorsoventral polarity in Dentalium vulgare (da Costa). Dev. Biol. 63: 233–242.Google Scholar
  30. Halanych, K. M., J. D. Bacheller, A. M. A. Aguinaldo, S. M. Liva, D. M. Hillis & J. A. Lake, 1995. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267: 1641–1643.Google Scholar
  31. Henry, J. J., 1986. The role of unequal cleavage and the polar lobe in the segregation of developmental potential during first cleavage in the embryo of Chaetopterus variopedatus. Roux's Arch. Dev. Biol. 195: 103–116.Google Scholar
  32. Henry, J. J., 1989. Removal of the polar lobe leads to the formation of functionally deficient photocytes in the annelid Chaetopterus variopedatus. Roux's Arch. Dev. Biol. 198: 129–136.Google Scholar
  33. Henry, J. J. & M. Q. Martindale, 1987. The organizing role of the D quadrant as revealed through the phenomenon of twinning in the polychaete Chaetopterus variopedatus. Roux's Arch. Dev. Biol. 196: 499–510.Google Scholar
  34. Henry, J. Q.& M. Q. Martindale, 1994. Establishment of the dorsoventral axis in nemertean embryos: Evolutionary considerations of spiralian development. Developmental Genetics 15: 64–78.Google Scholar
  35. Henry, J. Q. & M. Q. Martindale, 1995. The experimental alteration of cell lineages in the nemertean Cerebratulus lacteus: Implications for the precocious establishment of embryonic axial properties. Biol. Bull. 189: 192–193Google Scholar
  36. Henry, J. Q.& M. Q. Martindale, 1996a. The origins of mesoderm in the equal-cleaving nemertean worm Cerebratulus lacteus. Biol. Bull. 191: 286–288.Google Scholar
  37. Henry, J. Q. & M. Q. Martindale, 1996b. The establishment of embryonic axial properties in the nemertean, Cerebratulus lacteus. Dev. Biol. 180: 713–721.Google Scholar
  38. Henry, J. & M. Q. Martindale, 1997. The Nemertea. In S. Gilbert (ed.), Embryology, the Construction of Life, Sinauer, MA.Google Scholar
  39. Henry. J. Q. & M. Q. Martindale, 1998. Conservation of the spiralian developmental program: Cell lineage of the nemertean, Cerebratulus lacteus. Dev. Biol., 201: 253–269.Google Scholar
  40. Henry, J. Q., M. Q. Martindale & B. C. Boyer, 1995. Axial specification in a basal member of the spiralian clade: Lineage relationships of the first four cells to the larval body plan in the polyclad turbellarian Hoploplana inquilina. Biol. Bull. 189: 194–195.Google Scholar
  41. Katayama, T., M. Nishioika & M. Yamamoto, 1996. Phylogenetic relationships among the turbellarian orders inferred from 18s rDNA sequences. Zool. Sci. 13: 747–756.Google Scholar
  42. Lillie, F. R., 1895. The embryology of the Unionidae. J. Morph. 10: 1–100.Google Scholar
  43. Lillie, F. R., 1899. Adaptation in cleavage. Biol. Lects. MBL, summers of 1897–98. Ginn, Boston.Google Scholar
  44. Luetjens, C. M. & A. W. C. Dorresteijn, 1995. Multiple, alternative cleavage patterns precede uniform larval morphology during normal development of Dreissena polymorpha (Mollusca, Lamellibranchia). Roux's Arch. Dev. Biol. 205: 138–149Google Scholar
  45. Martindale, M. Q., 1986. The organizing role of the D quadrant in an equal-cleaving spiralian, Lymnaea stagnalis, as studied by UV laser deletion of macromeres at intervals between third and fourth quartet formation. Int. J. Invert. Reprod. Dev., 9: 229–242.Google Scholar
  46. Martindale, M. Q., C. Q. Doe & J. B. Morrill, 1985. The role of animal-vegetal interaction with respect to the determination of dorsoventral polarity in the equal-cleaving spiralian, Lymnaea palustris. Roux's Arch. Dev. Biol., 194: 281–295.Google Scholar
  47. Martindale, M. Q. & J. Q. Henry, 1995. Novel patterns of spiralian development: Alternate modes of cell fate specification in two species of equal-cleaving nemertean worms. Development 121: 3175–3185.Google Scholar
  48. McHugh, D., 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. natn. Acad. Sci. 94: 8006–8009.Google Scholar
  49. Mead, A. D., 1897. The early development of marine annelids. J. Morph. 13: 227–322.Google Scholar
  50. Newby, W. W., 1940. The embryology of the echiuroid worm Urechis caupo. Mem. am. Phil. Soc. 16: 1–219.Google Scholar
  51. Philippe, H., A. Chenuil & A. Adoutte, 1994. Can the Cambrian explosion be inferred through molecular phylogeny? Development (Suppl.): 15–25.Google Scholar
  52. Raff, R. A., C. R. Marshall & J. M. Turbeville, 1994. Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Ann. Rev. Ecol. Syst. 25: 351–375.Google Scholar
  53. Render, J. A., 1989. Development of Ilyanassa obsoleta embryos after equal distribution of polar lobe material at first cleavage. Dev. Biol. 132: 241–250.Google Scholar
  54. Render, J. A., 1991. Fate maps of the first quartet micromeres in the gastropod Ilyanassa obsoleta. Development 113: 495–501.Google Scholar
  55. Render, J. A., 1997. Cell fate maps in the Ilyanassa obsoleta embryo beyond the third division. Dev. Biol. 189: 301–310Google Scholar
  56. Rice, M. E., 1975. Sipunculida. In Giese, A. C. & J. S. Pearse (eds), Reproduction of Marine Invertebrates, Academic Press, New York: 67–127.Google Scholar
  57. Smith, C. M. & D. A. Weisblat, 1994. Micromere fate maps in leech embryos: lineage-specific differences in rates of cell proliferation. Development 120: 3427–3438.Google Scholar
  58. Sterrer, W., 1974. Gnathostomulida. In Giese, A. C. & J. S. Pearse (eds),Reproduction of Marine Invertebrates. Academic Press, New York. Vol. 1: 345–357.Google Scholar
  59. Torrey, J. C., 1903. The early embryology of Thalassema mellita. Ann. N. Y. Acad. Sci. 14: 165–246.Google Scholar
  60. Treadwell, A. L, 1901. Cytogeny of Podarke obscura Verrill. J. Morph. 17: 399–486.Google Scholar
  61. Turbeville, J. M., K. G. Field & R. A. Raff, 1992. Phylogenetic position of phylum Nemertini, inferred from 18s rRNA sequences: Molecular data as a test of morphological character homology. Mol. Biol. Evol. 9: 235–249.Google Scholar
  62. Tyler, A., 1930. Experimental production of double embryos in annelids and mollusks. J. exp. Zool. 57: 347–407.Google Scholar
  63. Valentine, J. W., 1997. Cleavage patterns and the topology of the metazoan tree of life. Proc. natn. Acad. Sci. 94: 8001–8005.Google Scholar
  64. Valentine, J. W., D. H. Erwin & D. Jablonski, 1996. Developmental evolution of metazoan body plans: The fossil evidence. Dev. Biol. 173: 373–381.Google Scholar
  65. van den Biggelaar, J. A. M., 1977. Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. J. Morph. 154: 157–186.Google Scholar
  66. van den Biggelaar, J. A. M. & P. Guerrier, 1979. Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusk Patella vulgata. Dev. Biol. 68: 462–471.Google Scholar
  67. van den Biggelaar, J. A. M. & P. Guerrier, 1983. Origin of spatial information. In Verdonk, N. H., J. A. M. van den Biggelaar & A. S. Tompa (eds), The Mollusca, Academic Press, New York. 179–213.Google Scholar
  68. Verdonk, N. H. & J. N. Cather, 1983. Morphogenetic determination and differentiation. In Verdonk, N. H., J. A.M. van den Biggelaar & A. S. Tompa (eds), The Mollusca, Academic Press, New York. 215–252.Google Scholar
  69. Verdonk, N. H. & J. A. M. van den Biggelaar, 1983. Early development and the formation of the germ layers. In Verdonk, N. H., J. A. M. van den Biggelaar & A. S. Tompa (eds), The Mollusca, Academic Press, New York: 91–122.Google Scholar
  70. Watase, S., 1888. Observations on the development of cephalopods: homology of the germ layer. Stud. Johns Hopkins Biol. Lab. 4: 165–183.Google Scholar
  71. Willmer, P., 1990. Invertebrate relationships, patterns in animal evolution. Cambridge University Press. Cambridge: 199–222.Google Scholar
  72. Wilson, E. B., 1892. The cell lineage of Nereis. J. Morph. 6: 361–481Google Scholar
  73. Wilson, E. B., 1898. Considerations on cell-lineage and ancestral reminiscence. Ann. N. Y. Acad. Sci. 11: 1–27.Google Scholar
  74. Winnepennickx, B., T. Backeljau, Y. van de Peer & R. de Wachter, 1992. Structure of the small ribosomal subunit RNA of the pulmonate snail Limiclaria kambeul, and phylogenetic analysis of the Metazoa. FEBS 309: 123–126.Google Scholar
  75. Woltereck, R., 1904. Beiträge zur praktischen Analyse der Polygordius-Entwicklung nach dem Nordsee und dem Mittelmeer Typus. I. Der für beide Typen gleichverlaufende Entwicklungsabschnitt vom Ei bis zum jüngsten Trochophora-Stadium. Arch. Entw. mech. Org. 18: 377–403.Google Scholar
  76. Young, C. M., E. Velaquez, A. Metaxas & P.A. Tyler, 1996. Embryology of vestimentiferan tube worms from deep-sea methane/ sulphide seeps. Nature 381: 514–516.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jonathan J. Henry
    • 1
  • Mark Q. Martindale
    • 2
  1. 1.Department of Cell and Structural BiologyUniversity of IllinoisUrbanaU.S.A
  2. 2.Kewalo Marine LaboratoryPBRC/University of HawaiiHonoluluU.S.A

Personalised recommendations