Advertisement

Hydrobiologia

, Volume 410, Issue 0, pp 295–306 | Cite as

Spatial and temporal variability of Total Suspended Solids in the Seine basin

  • M. Meybeck
  • Z. Idlafkih
  • N. Fauchon
  • V. Andreassian
Article

Abstract

We analyze the TSS distribution over the whole Seine basin (67 500 km2, stream order 8) from: 1. a set of 236 stations sampled quaterly to bimonthly from the french national water quality monitoring network over the 1971–1997 period, 2. four stations sampled daily over 3 and 4 years located on stream orders 1, 5, 6 and 8, 3. a weekly survey of the exceptional 1994/95 high water stage at 4 stations upstream and downstream of Greater Paris (10 M. people). Due to very low relief and even rainfall distribution over the year, the Seine and its river network from order 3 to 8, are characterized by very low TSS: 79% of medians (C50%) are between 8 and 32 mg l-1 and maximum TSS barely reach 300 mg l-1. Due to similar relief distributions, runoff patterns and geology in all sub-basins, major tributaries have near-identical long-term TSS regimes and seasonal variations during the 1994/95 flood stage. Second order TSS variations are linked to lithology: streams draining argillaceous and marl terrains are up to 3 and 4 times more turbid than those draining limestones and chalks. Basin size was also tested: the TSS range (quantiles C1% to C99%) decreases from order 1 to 8, and quantiles levels C10% to C75% double from order 3 to 8. Human impacts on TSS levels are quite limited: Greater Paris influence on longitudinal profiles is not observed; in periurban streams, where population density reach 1000 p km-2, TSS levels are twice those observed in rural conditions (40 p km-2): C75% are 32 ± 12 and 17.5 ± 9 mg l-1, respectively. In orders 6 to 8, the lower TSS quantiles (C10% and C25%) are higher than in orders 3 – 5, this can be attributed to eutrophication and/or to an important fluvial traffic. No significant trend was observed on the TSS distributions at the river mouth from 1971 to 1997. Comparison with a previous daily survey in 1863–1866 showed present marked decrease of average TSS and TSS yearly range attributed mostly to locks.

Total Suspended Solids space variability statistical distribution Seine river 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. E. S. N., 1973-78. La Seine et les cours d'eau normands. Agence de l'Eau Seine-Normandie, Nanterre, France, 12 vols+ atlas.Google Scholar
  2. Arnaud-Fassetta, G. & M. Provansal, 1999. High frequency variations of water flux and sediment discharge during the Little Ice Age (1586-1725 AD) in the Rhône Delta (Mediterranean France). Relationship to the catchment basin. Hydrobiologia 410: 241-250.Google Scholar
  3. Billen, G., J. Garnier & Ph. Hanset, 1994. Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289, 119-137.Google Scholar
  4. Chapman, D. (ed), 1992. Assessment of the Quality of the Aquatic Environment throught Water, Biota and Sediment, Chapman & Hall, London: 585 pp.Google Scholar
  5. Dessery, S., C. Dulac, J. M. L aurenceau & M. Meybeck, 1994. Evolution du carbone organique particulaire 'algal' et 'détritique' dans trois rivières du Bassin Parisien. Arch. Hydrobiol. 100: 235-260.Google Scholar
  6. Forel, F. A., 1892-1904. —Le Léman. Monographie limnologique, Vol. I, II and III, F. Rouge, Lausanne.Google Scholar
  7. Garnier, J., G. Billen, P. Hanset, P. Testard, M. Coste, 1998. Développement algal et eutrophisation dans le réseau hydrographique de la Seine. In M. Meybeck, G. de Marsily & E. Fustec (eds), La Seine en Son Basin. Elsevier, Paris: 593-626.Google Scholar
  8. Horowitz, A. Z., 1995. The use of suspended sediment and associated trace elements in water quality studies. Int. Ass. Hydrol. Sci. Special Publ. 4: 58 pp.Google Scholar
  9. Idlafkih, Z., 1998. Transport des ions majeurs, nutriments, carbone organique et métaux particulaires dans un fleuve anthropisé: la Seine. Thèse de Doctorat, Université de Paris VI.Google Scholar
  10. Kimstach V., M. Meybeck, E. Baroudy (eds), 1998. A Water Quality Assessment in the Former Soviet Union. E & F.N. Spon, London: 611 pp.Google Scholar
  11. Mangon, H., 1887. Expériences sur l'Emploi des Eaux dans les Irrigations sous Différents Climats et sur la Proportion des Limons Charriés par les Cours d'Eaux. Paris, Dunod.Google Scholar
  12. Meybeck, M., 1986. The quality of world rivers through the GEMS programme. In E. T. Degens & A. Spitzy (eds), Transport of Carbon and Minerals in World Major Rivers, part. IV. Mitt. Geol. Palaont. Inst. Hamburg 64: 349-358.Google Scholar
  13. Meybeck, M., 1998. Man and river interface: multiple impacts on water and particulate chemistry illustrated in the Seine river basin. Hydrobiologia 373/374, 1-20.Google Scholar
  14. Meybeck, M., J. M. Mouchel, Z. Idlafkih, V. Andreassian & S. Thibert, 1998A. Transferts d'eau, de matières dissoute et particulaire dans le réseau fluvial. In M. Meybeck, G. de Marsily & E. Fustec (eds), La Seine en Son Basin. Elsevier, Paris: 345-389.Google Scholar
  15. Meybeck, M., G. de Marsily & E. Fustec (eds), 1998B. La Seine en Son Basin: Elsevier, Paris: 749 pp.Google Scholar
  16. Milliman, J. D. & P. M. Syvitski, 1992. Geomorphic/tectonic control of sediment discharges to the ocean: the importance of small mountainous rivers. J. Geol. 100: 525-544.Google Scholar
  17. Müller, G. & U. Förstner, 1968. General relationship between suspended sediment concentration and water discharge in the Alpenrhein and some other rivers. Nature 217, 5125: 244-245.Google Scholar
  18. Ongley, E. D., 1992. Environmental quality: changing times for sediment programmes. Int. Ass. Hydrol. Sci. Publ. 210: 379-389.Google Scholar
  19. Penven, M. J., T. Muxart, F. Bartoli, P. Bonté, D. Brunstein, C. Cosandey, V. Gouy, V. Irace, T. Leviandier & S. Sogon, 1998. Petits bassins ruraux et pollutions diffuses. In M. Meybeck, G. de Marsily & E. Fustec (eds), La Seine en Son Basin. Elsevier, Paris: 159-210.Google Scholar
  20. Petts, G. E. & P. Calow (eds), 1996. River Flows and Channel Forms. Blackwell Science, London: 257 pp.Google Scholar
  21. Sundborg, A. & A. Rapp, 1986. Erosion and sedimentation by water: problems and prospects. Ambio 15, 215-225.Google Scholar
  22. Thibert, S., 1994. Exportations naturelles et anthropiques des ions majeurs et des éléments nutritifs dans le bassin de la Seine. Ph D dissertation, univ. of Paris VI: 204 pp.Google Scholar
  23. Thomas, R. & M. Meybeck, 1992. The use of particulate material. In D. Chapman (ed.), Water Quality Assessments. Chapman & Hall, London: 121-170.Google Scholar
  24. Walling, D. E. & B. W. Webb, 1983. Patterns of sediment yield. In K. J. Gregory (ed.), Blackground to Palaeohydrology. John Wiley & Sons: 69-100.Google Scholar
  25. Walling, D. E., 1977. Suspended sediments and solute response characteristics of the River Exe, Devon, England. In R. Davidson-Arnott & W. Nickling (eds), Research in Fluvial Geomorphology. GeoAbstracts, Norwich: 169-197.Google Scholar
  26. Williams, G. P., 1989. Sediment concentrations versus mater discharge during hydrologic events in rivers. J. Hydrol. 111: 89-106.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. Meybeck
    • 1
  • Z. Idlafkih
    • 1
  • N. Fauchon
    • 2
  • V. Andreassian
    • 3
  1. 1.UMR Sisyphe CNRS/UPMCParisFrance
  2. 2.CGE–VivendiParis La Défense cedex 82France
  3. 3.Parc de TourvoieCemagrefAntonyFrance

Personalised recommendations