Advertisement

Hydrobiologia

, Volume 401, Issue 0, pp 19–33 | Cite as

Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities

  • S. M. Short
  • C. A. SuttleEmail author
Article

Abstract

Viruses are abundant members of marine and freshwater microbial communities, and are important players in aquatic ecology and geochemical cycles. Recent methodological developments have allowed the use of the polymerase chain reaction (PCR) to examine the diversity of natural communities of viruses without the need for culture. DNA polymerase genes are highly conserved and are, therefore, suitable targets for PCR analysis of microbes that do not encode rRNA. As natural virus communities are largely made up of dsDNA viruses, and as many dsDNA algal viruses encode their own DNA polymerase, PCR primers can be designed to amplify fragments of these genes. This approach has been used to examine the genetic diversity in natural communities of viruses that infect phytoplankton. Algal-virus-specific primers were used to amplify polymerase fragments from natural virus samples, demonstrating the presence of a diverse community of viruses closely related to those that are known to infect phytoplankton. We have modified this approach by using denaturing gradient gel electrophoresis (DGGE) to rapidly analyze PCR products. DGGE will permit rapid and efficient fingerprinting of natural marine viral communities, and allow spatial and temporal differences in viral community structure to be examined. This paper provides a brief overview of how PCR and DGGE can be used to examine diversity in natural viral communities drawing on viruses that infect phytoplankton as an example.

phytoplankton viruses diversity polymerase PCR DGGE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argos, P., A. D. Tucker, L. Philipson (1986). Primary structural relationships may reflect similar DNA replication strategies. Virology 149: 208–216.Google Scholar
  2. Argos, P. (1988). A sequence motif in many polymerases. Nucl. Acids Res. 16(21): 9909–9916.Google Scholar
  3. Bej, A. K., R. J. Steffan, J. DiCesare, L. Haff, R. M. Atlas (1990). Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl. envir. Microbiol. 56: 307–314.Google Scholar
  4. Bergh, O., K. Y. Børsheim, G. Bratbak, M. Heldal (1989). High abundance of viruses found in aquatic environments. Nature 340: 467–468.Google Scholar
  5. Børsheim, K. Y., G. Bratbak, M. Heldal (1990). Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. envir. Microbiol. 56(2): 352–356.Google Scholar
  6. Braithwaite, D. K., J. Ito (1993). Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucl. Acids Res. 21(4): 787–802.Google Scholar
  7. Bratbak, G., F. Thingstad, M. Heldal (1994). Viruses and the microbial loop. Microb. Ecol. 28: 209–221.Google Scholar
  8. Brown R. M., Jr. (1972). Algal viruses. Advances in Virus Res. 17: 243–277.Google Scholar
  9. Calisher, C. H., M. C. Horzinek, M. A. Mayo, H.-W. Ackermann, J. Maniloff. (1995). Sequence analyses and a unifying system of viral taxonomy: consensus via consent. Arch. Virol. 140: 2093–2099.Google Scholar
  10. Chen, F., C. A. Suttle (1995a). Nested PCR with three highly degenerate primers for amplification and identification of DNA from related organisms. BioTechniques 18: 609–612.Google Scholar
  11. Chen, F., C. A. Suttle (1995b). Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. envir. Microbiol 61: 1274–1278.Google Scholar
  12. Chen, F., C. A. Suttle (1996). Evolutionary relationships among large double stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219: 170–178.Google Scholar
  13. Chen, F., C. A. Suttle, S. M. Short (1996). Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl. envir. Microbiol. 62(8): 2869–2874.Google Scholar
  14. Chiura, H. X. (1997). Generalized gene transfer by virus-like particles from marine bacteria. Aquat. microb. Ecol. 13: 75–83.Google Scholar
  15. Cottrell, M. T., C. A. Suttle (1991). Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78: 1–9.Google Scholar
  16. Cottrell, M. T., C. A. Suttle (1995a). Dynamics of a lytic virus infecting the marine picoflagellate Micromonas pusilla. Limnol. Oceanogr. 40(4): 730–739.Google Scholar
  17. Cottrell, M. T., C. A. Suttle (1995b). Genetic diversity of algal viruses which lyse the photosynthetic picoflagellate Micromonas pusilla (Prasinophyceae). Appl. envir. Mirobiol. 61(8): 3088–3091.Google Scholar
  18. Damagnez, V., J. Tillit, A-M. de Recondo, G. Baldacci (1991). The POL I gene from fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. Mol. Gen. Genet. 226: 182–189.Google Scholar
  19. Field, K. G., D. Gordon, T. Wright, m Rappé, E. Urbach, K. Vergin, S. J. Giovannoni (1997). Diversity and Depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. envir. Microbiol. 63(1): 63–70.Google Scholar
  20. Ferris, M. J., G. Muyzer, D. M. Ward (1996). Denaturing gradient gel electrophoresis profiles of 15S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. envir. Microbiol. 62: 340–346.Google Scholar
  21. Fuhrman, J. A., K. McCallum, A. A. Davis (1992). Novel major archaebacterial group from marine plankton. Nature 356: 148–149.Google Scholar
  22. Fuhrman, J. A., C. A. Suttle (1993). Viruses in marine planktonic systems. Oceanography 6(2): 51–63.Google Scholar
  23. Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, K. G. Field (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.Google Scholar
  24. Giovannoni, S., S. C. Cary (1993). Probing marine systems with ribosomal RNAs. Oceanography 6(3): 95–104.Google Scholar
  25. Grabherr, R., P. Strasser, J. L. Van Etten (1992). The DNA polymerase gene from Chlorella viruses PBCV-1 and NY-2A contains and intron with nuclear splicing sequences. Virology 188: 721–731.Google Scholar
  26. Heuer, H., M. Krsek, P. Baker, K. Smalla, E. M. H. Wellington (1997). Analysis of Actinomycete communities by specific amplification of genes encoding 16s rRNA and gel-electrophoretic separation in denaturing gradients. Appl. envir. Microbiol. 63(8): 3233–3241.Google Scholar
  27. Illana, B., L. Blanco, M. Salas (1996). Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication. J. mol. Biol. 264: 453–464.Google Scholar
  28. Innis, M. A., D. H. Gefland, J. J. Sninsky, T. J. White (1990). PCR protocols: A Guide toMethods and Applications. Academic Press, Inc., San Diego. 482 pp.Google Scholar
  29. Ito, J., D. K. Braithwaite (1990). Yeast mitochondrial DNA polymerase is related to the family A DNA polymerases. Nucl. Acids Res. 18(22): 6716.Google Scholar
  30. Ito, J., D. K. Braithwaite (1991). Compilation and alignment of DNA polymerase sequences. Nucl. Acids. Res. 19(15): 4045–4057.Google Scholar
  31. Iwasaki, H., Y. Ishino, H. Toh, A. Nakata, H. Shinagawa (1991). Escherichia coli DNA polymerase II is homologous to a-like DNA polymerases. Mol. Gen. Genet. 226: 24–33.Google Scholar
  32. Jacobsen, A., G. Bratbak, M. Heldal (1996). Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J. Phycol. 23: 923–927.Google Scholar
  33. Jiang, S. C., J. H. Paul (1994). Seasonal and diel abundance of viruses and the occurrence of lysogeny/bacteriocinogy in the marine environment. Mar. Ecol. Prog. Ser. 104: 163–172.Google Scholar
  34. Joyce C. M., Steitz, T. A. (1994). Function and Structure Relationships in DNA Polymerases. Annu. Rev. Biochem. 63: 777–822.Google Scholar
  35. Jung, G., M. C. Leavitt, J.-C., Hsieh, J. Ito (1987). Bacteriophage PRD1 DNA polymerase: Evolution of DNA polymerases. Proc. natl. Acad. Sci. 84: 8287–8291.Google Scholar
  36. Kamer, G., Argos P. (1984). Primary structural comparison of RNAdependent polymerases from plant, animal and bacterial viruses. Nucl. Acids Res. 12(18): 7269–7282.Google Scholar
  37. Kopecka, H. S., S. Dubrou, J. Prevut, J. Marechal, J. M. Lopez-Pila (1993). Detection of naturally occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and hybridization. Appl. envir. Microbiol. 59: 1213–1219.Google Scholar
  38. Liesack, W., H. Weyland, E. Stackebrandt (1991). Potential risks of gene amplification by PCR as determined by 16s rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb. Ecol. 21: 191–198.Google Scholar
  39. Mayer, J. A., F. J. R. Taylor (1979). A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature 281: 299–301.Google Scholar
  40. Meyer, G., C. Vlcek, V. Paces, M. K. O'Hara, P.-P. Pastoret, E. Thiry, M. Schwyzer (1997). Sequence analysis of the bovine herpesvirus type 1 genes homologous to the DNA polymerase (UL30), the major DNA-binding protein (UL29) and ICP18.5 assembly protein (UL28) genes of herpes simplex virus. Arch Virol 142: 89–102.Google Scholar
  41. Milligan, K. L., E. M. Cosper (1994). Isolation of virus capable of lysing the brown tide microalga, Aureococcus anaphagefferens. Science 266: 805–807.Google Scholar
  42. Mullis, K. B., Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–351.Google Scholar
  43. Muyzer, G., E. C. De Waal, A. G. Uitterlinden (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. envir. Microbiol. 59: 695–700.Google Scholar
  44. Myers, R. M., T. Maniatis, L. S. Lerman (1987). Detection and localization of single base changes by denaturing gradient gel electrophoresis. Meth. Enzymol. 155: 501–527.Google Scholar
  45. Nagasaki, K., M. Yamaguchi (1997). Isolation of a virus infectious to the harmful bloom forming alga Heterosigma akashiwo (Raphidophyceae). Aquat. microb. Ecol. 13: 135–140.Google Scholar
  46. Nübel, U., F. Garcia-Pichel, G. Muyzer (1997). PCR primers to amplify 16s rRNA genes from cyanobacteria. Appl. envir. Microbiol. 63(8): 3327–3332.Google Scholar
  47. Ohki, K., Y. Fujita (1996). Occurrence of a temperate cyanophage lysogenizing the marine cyanophyte Phormidium persicinium. J. Phycol. 32: 365–370.Google Scholar
  48. Paul, J. H., S. C. Jiang, J. B. Rose (1991). Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl. envir. Microb. 57: 2197–2204.Google Scholar
  49. Pizzagalli, A., P. Valsasnini, P. Plevani, G. Lucchini (1988). DNA polymerase I gene of Saccharomyces cerevisiae: Nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc. natl. Acad. Sci. 85: 3772–3776.Google Scholar
  50. Proctor, L. M., J. A. Fuhrman (1990). Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60–62.Google Scholar
  51. Reysenbach, A.-L., L. J. Giver, G. S. Wickham, N. R. Pace (1992). Differential amplification of rRNA genes by polymerase chain reaction. Appl. envir. Microbiol. 58(10): 3417–3418.Google Scholar
  52. Ridley, R. G., J. H. White, S. M. McAleese, M. Goman, P. Alano, E. de Vries, B. J. Kilbey (1991). DNA polymerase ?: gene sequences from Plasmodium falciparum indicate that this enzyme is more highly conserved that DNA polymerase ?. Nucl. Acids Res. 19(24): 6731–6736.Google Scholar
  53. Rohozinski, J., J. L. Van Etten (1989). Characterization of DNA polymerases in an uninfected and virus PBCV-1 infected green algae – Chlorella strain NC64A. Intervirology 30: 156–162.Google Scholar
  54. Rölleke, S., G. Muyzer, C. Wawer, G. Wanner, W. Lubitz (1996). Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16s rRNA. Appl. envir. Microbiol. 62(6): 2059–2065.Google Scholar
  55. Sambrook, J., E. F. Fritsch, T. Maniatis (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, N. Y.Google Scholar
  56. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. G. Higuchi, T. T. Horn, K. B. Mullis, H. A. Erlich (1988). Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.Google Scholar
  57. Santegoeds, C. M., S. C. Nold, D. M. Ward (1996). Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl. envir. Microbiol. 62: 3922–3928.Google Scholar
  58. Sheffield, V. C., D. R. Cox, L. S. Lerman, R. M. Meyers (1989). Attachment of a 40-base-pair G +C rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. natl. Acad. Sci 86: 232–236.Google Scholar
  59. Sheffield, V. C., J. S. Beck, E. M. Stone. (1992). A simple efficient method for attachment of a 40-base pair, GC-rich sequence to PCR-amplified DNA. BioTechniques 12(3): 386–387.Google Scholar
  60. Scholin, C. A., D. M. Anderson (1994). Identification of group-and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). I. RFLP analysis of SSU rRNA genes. J. Phycol. 30: 744–754.Google Scholar
  61. Steffan, R. J., R. M. Atlas (1991). Polymerase chain reaction: applications in environmental microbiology. Annu. Rev. Microbiol. 45: 137–161.Google Scholar
  62. Suttle, C. A., A. M. Chan, M. T. Cottrell (1990). Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347: 467–469.Google Scholar
  63. Suttle, C. A. (1992). Inhibition of photosynthesis in phytoplankton by the submicron size fraction concentrated from seawater. Mar. Ecol. Prog. Ser. 87: 105–112.Google Scholar
  64. Suttle, C. A. (1994). The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28: 237–243.Google Scholar
  65. Suttle, C. A., A. M. Chan (1995). Viruses infecting the marine Prymnesiophyte Chyrsochromulina spp.: isolation, preliminary characterization and natural abundance. Mar. Ecol. Prog. Ser. 118: 275–282.Google Scholar
  66. Suzuki, M. T., M. S. Rappé, Z. W. Haimberger, H. Winfield, N. Adair, J. Ströbel, S. J. Giovannoni (1997). Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. envir. Microbiol. 63(3): 983–989.Google Scholar
  67. Thingstad, T.F., M. Heldal, G. Bratback, I. Dundas (1993). Are viruses important partners in pelagic food webs? Trends ecol. Evol. 8(6): 209–213.Google Scholar
  68. Torella, F., R. Y. Morita (1979). Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomic implications. Appl. envir. Microbiol. 37: 774–778.Google Scholar
  69. Van Etten, J. L., L. C. Lane, R. H. Meints (1991). Viruses and virus like particles of eukaryotic algae. Microbiol. Rev. 55: 586–620.Google Scholar
  70. Wang, S.-F. (1991). Eukaryotic DNA Polymerases. Annu. Rev. Biochem. 60: 513–552.Google Scholar
  71. Waterbury, J. B., F. W. Valois (1993). Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. envir. Microbiol. 59(10): 3393–3399.Google Scholar
  72. Weinbauer, M. G., D. Fuks, P. Peduzzi (1993). Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic Sea. Appl. envir. Microbiol. 59: 4074–4082.Google Scholar
  73. Wiggins, B. A., M. Alexander (1985). Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl. envir. Microbiol. 49(1): 19–23.Google Scholar
  74. Wong, S. W., A. F. Wahl, P-M. Yuan, N. Arai, B. E. Pearson, K. Arai, D. Korn, M. W. Hunkapiller, T. S. F. Wang (1988). Human DNA polymerase a gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO 7(1): 37–47.Google Scholar
  75. Wright, T. D., K. L. Vergin, P. W. Boyd, S. J. Giovannoni (1997). A novel ?-subdivision proteobacterial lineage from the lower ocean surface layer. Appl. envir. Microbiol. 63(4): 1441–1448.Google Scholar
  76. Zhang, Y. P., C. A. Suttle (1994). Design and use of PCR primers for B-family DNA polymerase genes to detect and identify viruses and microbes (abstract), p. a-85. ASLO/PSA Joint Meeting, Florida, June 12–16, 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  1. 1.The Departments of Earth and Ocean Sciences, Microbiology and Immunology, and BotanyUniversity of British ColumbiaVancouverCanada

Personalised recommendations