Advertisement

International Journal of Theoretical Physics

, Volume 39, Issue 7, pp 1859–1875 | Cite as

Cosmological Constant Versus Quintessence

  • Pierre Binétruy
Article

Abstract

The mounting evidence that the universe is presently undergoing acceleratingexpansion has restored some credit to the scenarios with a nonvanishingcosmological constant. From the point of view of a theory of fundamentalinteractions, one may argue that a dynamical component with negative pressureis easier to achieve. As an illustration, the quintessence scenario is described andits shortcomings are discussed in connection with the nagging “cosmologicalconstant problem.”

Keywords

Field Theory Elementary Particle Quantum Field Theory Negative Pressureis Dynamical Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Einstein, Preuss. Akad. Wiss. Sitzungsber. 1 (1917) 142.Google Scholar
  2. 2.
    S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.Google Scholar
  3. 3.
    A. Melchiorri et al., astro-ph/9911445.Google Scholar
  4. 4.
    M. Kamionkowski, D. N. Spergel, and N. Sugiyama, Astrophys. J. 426 (1994) L57.Google Scholar
  5. 5.
    N. A. Bahcall, J. P. Ostriker, S. Perlmutter, and P. J. Steinhardt, Science 284 (1999) 1481 [astro-ph/9906463].Google Scholar
  6. 6.
    S. Perlmutter et al., Astrophys. J. 517 (1999) 565.Google Scholar
  7. 7.
    A. G. Riess et al., Astron. J. 516 (1998) 1009; P. M. Garnavich et al., Astrophys. J. 509 (1998) 74.Google Scholar
  8. 8.
    S. M. Carroll, W. H. Press, and E. L. Turner, Annu. Rev. Astron. Astrophys. 30 (1992) 499.Google Scholar
  9. 9.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), Section 14.6.Google Scholar
  10. 10.
    C. S. Kochanek, Astrophys. J. 453 (1995) 545; 466 (1996) 638; E. E. Falco, C. S. Kochanek, and J. A. Munoz, Astrophys. J. 494 (1998) 47.Google Scholar
  11. 11.
    L. Wambsganss, R. Cen, J. P. Ostriker, and E. L. Turner, Science 268 (1995) 274; M. Bartelmann et al., Astron. Astrophys. 330 (1998) 1.Google Scholar
  12. 12.
    F. Bernardeau, L. van Waerbeke, and Y. Mellier, astro-ph/9807007; Y. Mellier, Annu. Rev. Astron. Astrophys. 37 (1999) 127.Google Scholar
  13. 13.
    A. Vilenkin, Phys. Rev. Lett. 53 (1984) 1016.Google Scholar
  14. 14.
    D. Spergel and U. Pen, Astrophys. J. 491 (1997) L67.Google Scholar
  15. 15.
    J. Frieman, C. Hill, A. Stebbins, and I. Waga, Phys. Rev. Lett. 75 (1995) 2077.Google Scholar
  16. 16.
    B. Ratra and P. J. E. Peebles, Phys. Rev. D 37 (1988) 3406.Google Scholar
  17. 17.
    R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582, astroph/ 9708069.Google Scholar
  18. 18.
    P. Binétruy, Phys. Rev. D 60 (1999) 063502, hep-th/9810553.Google Scholar
  19. 19.
    J. Halliwell, Phys. Lett. B 185 (1987) 341; J. D. Barrow, Phys. Lett. B 187 (1987) 12.Google Scholar
  20. 20.
    C. Wetterich, Nucl. Phys. B 302 (1988) 688; E. J. Copeland, A. R. Liddle, and D. Wands, Ann. N. Y. Acad. Sci. 688 (1993) 647; Phys. Rev. D 57 (1998) 4686.Google Scholar
  21. 21.
    P. Ferreira and M. Joyce, Phys. Rev. Lett. 79 (1997) 4740, astro-ph/9707286; Phys. Rev. D 58 (1997) 023503, astro-ph/9711102.Google Scholar
  22. 22.
    J.-Ph. Uzan, Phys. Rev. D 59 (1999) 123510, gr-qc/9903004.Google Scholar
  23. 23.
    I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82 (1999) 896, astro-ph/9807002.Google Scholar
  24. 24.
    P. J. E. Peebles and B. Ratra, Astrophys. J. L17 (1988) 325.Google Scholar
  25. 25.
    A. R. Liddle and R. J. Scherrer, Phys. Rev. D 59 (1998) 023509, astro-ph/9711102.Google Scholar
  26. 26.
    A. Masiero, M. Pietroni, and F. Rosati, Phys. Rev. D 61 (2000) 023504, hep-ph/9905346.Google Scholar
  27. 27.
    A. Albrecht and C. Skordis, astro-ph/9908085.Google Scholar
  28. 28.
    M. Peloso and F. Rosati, J. High Energy Phys. 9912 (1999) 026.Google Scholar
  29. 29.
    B. Spokoiny, Phys. Lett. B 315 (1993) 40.Google Scholar
  30. 30.
    M. Joyce, Phys. Rev. D 55 (1997) 1875, hep-ph/9606223.Google Scholar
  31. 31.
    P. J. E. Peebles and A. Vilenkin, Phys. Rev. D 59 (1999) 063505, astro-ph/9810509.Google Scholar
  32. 32.
    J. E. Kim, hep-ph/9811509.Google Scholar
  33. 33.
    K. Choi, hep-ph/9902292.Google Scholar
  34. 34.
    S. M. Carroll, Phys. Rev. Lett. 81 (1998) 3067, astro-ph/9806099.Google Scholar
  35. 35.
    C. Kolda and D. Lyth, Phys. Lett. B 458 (1999) 197, hep-ph/9811375.Google Scholar
  36. 36.
    P. Brax and J. Martin, Phys. Lett. B 468 (1999) 40, astro-ph/9905040; astro-ph/9912046.Google Scholar
  37. 37.
    T. Damour and A. Polyakov, Nucl. Phys. B 423 (1994) 532.Google Scholar
  38. 38.
    T. Damour and F. Dyson, Nucl. Phys. B 480 (1996) 37, hep-ph/9606488.Google Scholar
  39. 39.
    L. Amendola, Phys. Rev. D 60 (1999) 043501, astro-ph/9904120.Google Scholar
  40. 40.
    T. Chiba, Phys. Rev. D 60 (1999) 083508, gr-qc/9903094.Google Scholar
  41. 41.
    T. Damour and K. Nordtvedt, Phys. Rev. Lett. 70 (1993) 2217.Google Scholar
  42. 42.
    N. Bartolo and M. Piertoni, Phys. Rev. D 61 (2000) 023518, hep-ph/9908521.Google Scholar
  43. 43.
    N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R. Sundrum, hep-th/0001197.Google Scholar
  44. 44.
    S. Kachru, M. Schulz, and E. Silverstein, hep-th/0001206; hep-th/0002121.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Pierre Binétruy
    • 1
  1. 1.LPTUniversité Paris-XIOrsay CedexFrance

Personalised recommendations