International Journal of Theoretical Physics

, Volume 39, Issue 3, pp 605–614 | Cite as

State Transitions as Morphisms for Complete Lattices

  • Bob Coecke
  • Isar Stubbe


We enlarge the hom-sets of categories of complete lattices by introducing 'statetransitions' as generalized morphisms. The obtained category is then comparedwith a functorial quantaloidal enrichment and a contextual quantaloidalenrichment that uses a specific concretization in the category of sets and partiallydefined maps (Parset).


Field Theory State Transition Elementary Particle Quantum Field Theory Complete Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamek, J., Herrlich, H., and Strecker, G. E. (1990). Abstract and Concrete Categories, Wiley, New York.Google Scholar
  2. Amira, H., Coecke, B., and Stubbe, I. (1998). Helv. Phys. Acta 71, 554.Google Scholar
  3. Borceux, F. (1994). Handbook of Categorical Algebra 1 and 2, Cambridge University Press, Cambridge.Google Scholar
  4. Coecke, B., and Moore, D. J. (1999). Dualizing temporal causation and propagation of properties through the Galois connection, Presented at the 23rd Holiday Mathematics Symposium, New Mexico State University.Google Scholar
  5. Coecke, B., and Stubbe, I. (1999a). Found. Phys. Lett. 13(2).Google Scholar
  6. Coecke, B., and Stubbe, I. (1999b). On a duality of quantales emerging from an operational resolution, Int. J. Theor. Phys. to appear.Google Scholar
  7. Faure, C.-A., and Frölicher, A. (1993). Geom. Dedicata 47, 25.Google Scholar
  8. Faure, C.-A., and Frölicher, A. (1994). Geom. Dedicata 53, 273.Google Scholar
  9. Faure, C.-A., Moore, D. J., and Piron, C. (1995). Helv. Phsy. Acta 68, 150.Google Scholar
  10. Moore, D. J. (1995). Helv. Phys. Acta 68, 658.Google Scholar
  11. Moore, D. J. (1999). Fundamental structures in physics: A categorial approach, Int. J. Theor. Phys., this issue.Google Scholar
  12. Piron, C. (1964). Helv. Phys. Acta 37, 439.Google Scholar
  13. Piron, C. (1976). Foundations of Quantum Physics, Benjamin, New York.Google Scholar
  14. Pitts, A. M. (1988). Proc. Lond. Math. Soc. 57, 433.Google Scholar
  15. Pool, J. C. T. (1968). Comm. Math. Phys. 9, 118.Google Scholar
  16. Rosenthal, K. I. (1990). Quantales and Their Applications, Longman, London.Google Scholar
  17. Rosenthal, K. I. (1991). J. Pure Appl. Alg. 77, 67.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Bob Coecke
    • 1
  • Isar Stubbe
    • 2
  1. 1.FUND-DWISFree University of BrusselsBrusselsBelgium
  2. 2.AGEL-MAPAUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations