Genetica

, Volume 105, Issue 1, pp 93–99 | Cite as

Heterochromatic banding pattern in two Brazilian populations of Aedes aegypti

  • Rita de Cássia de Sousa
  • Hermione Elly Melara de Campos Bicudo
Article

Abstract

We analysed samples of Aedes aegypti from São José do Rio Preto and Franca (Brazil) by C‐banding and Ag‐banding staining techniques. C‐banding pattern of Ae.aegypti from São José do Rio Preto examined in metaphase cells differed from Franca. The chromosomes 2, 3 and X showed centromeric C‐bands in both populations, but a slightly stained centromeric band in the Y chromosome was observed only in São José do Rio Preto. In addition, the X chromosome in both populations and the Y chromosome of all individuals from São José do Rio Preto showed an intercalary band on one of the arms that was absent in Franca. An intercalary, new band, lying on the secondary constriction of chromosome 3 was also present in mosquitoes of both populations. The comparison of the present data with data in the literature for Ae.aegypti from other regions of the world showed that they differ as to the banding pattern of sex chromosomes and the now described intercalary band in chromosome 3. The observations suggested that the heterochromatic regions of all chromosomes are associated to constitute a single C‐banded body in interphase cells. Ag‐banding technique stained the centromeric regions of all chromosomes (including the Y) and the intercalary C‐band region of the X chromosome in both populations. As Ae.aegypti populations are widespread in a great part of the world, the banding pattern variations indicate environmental interactions and may reveal both the chromosome evolutionary patterns in this species and the variations that may interfere with its vector activity.

Aedes aegypti C‐banding chromosomes 

References

  1. Baimai, V., 1988. Constitutive heterochromatin differentiation and evolutionary divergence of karyotype in oriental Anopheles (Cellia). Pacific Science 42: 13–27.Google Scholar
  2. Bonaccorsi, S., G. Santini, M. Gati, S. Pimpinelli & M. Coluzzi, 1980. Intraspecific polymorphism of sex chromosome heterochromatin in two species of the Anopheles gambiae complex. Chromosoma 76: 57–64.PubMedCrossRefGoogle Scholar
  3. Clements, A.N., 1992. The Biology of Mosquitoes: Development, Nutrition and Reproduction. Chapman & Hall, v.1, p. 509.Google Scholar
  4. Durica, D.S. & H.M. Krider, 1978. Studies on the ribosomal RNA cistrons in interspecific Drosophila hybrids. II. Heterochromatic regions mediating nucleolar dominance. Genetics 89: 37–64.Google Scholar
  5. Fraccaro, M., L. Tiepolo, U. Laudani, A. Marchi & S.D. Jayakar, 1977. Y chromosome controls mating behavior on Anopheles mosquitoes. Nature 265: 326–328.PubMedCrossRefGoogle Scholar
  6. Givens, J.F. & R.L. Phillips, 1976. The nucleolus organizer regions of maize (Zea mays L.) — Ribosomal RNA gene distribution and nucleolar interactions. Chromosoma 57: 103–117.CrossRefGoogle Scholar
  7. Hirning, U., W.A. Schulz, W. Just, S. Adolph & W. Vogel, 1989. A comparative study of the heterochromatin of Apodemus sylvaticus and Apodemus flavicollis. Chromosoma 98: 450–455.CrossRefGoogle Scholar
  8. Howell, W.M. & D.A. Black, 1980. Controlled silver staining of nucleolus organizer regions with protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.PubMedCrossRefGoogle Scholar
  9. Jamilena, M., C. Ruiz Rejón & M. Ruiz Rejón, 1990. Variation in the heterochromatin and nucleolar organizing regions of Allium subvillosum L. (Liliaceae). Genome 33: 779–784.Google Scholar
  10. John, B., 1988. The biology of heterochromatin, pp.1–147 in Heterochromatin: Molecular and Structural Aspects, edited by R.S. Verma. Cambridge University Press, Cambridge.Google Scholar
  11. Kumar, A., & K.S. Rai, 1990. Chromosomal localization and copy number of 18S+28S ribosomal RNA genes in evolutionarily diverse mosquitoes (Diptera, Culicidae). Hereditas 113: 277–289.PubMedGoogle Scholar
  12. McDonald, P.T. & K.S. Rai, 1970. Correlation of linkage groups with chromosomes in the mosquito, Aedes aegypti. Genetics 66: 475–485.PubMedGoogle Scholar
  13. Motara, M.A. & K.S. Rai, 1977. Chromosomal differentiation in two species of Aedes and their hybrids revealed by giemsa C-banding. Chromosoma 64: 125–132.CrossRefGoogle Scholar
  14. Motara, M.A. & K.S. Rai, 1978. Giemsa C-banding patterns in Aedes (Stegomyia) mosquitoes. Chromosoma 70: 51–58.CrossRefGoogle Scholar
  15. Motara, M.A., 1982. Giemsa C-banding in four species of mosquitoes. Chromosoma 86: 319–323.CrossRefGoogle Scholar
  16. Motara, M.A., S. Pathak, K.L. Satya-Prakash & T.C. Hsu, 1985. Argentophilic structures of spermatogenesis in the yellow fever mosquito. J. Hered. 76: 295–300.PubMedGoogle Scholar
  17. Newton, M.E., D.I. Southern & R.J. Wood, 1974. X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding. Chromosoma 49: 41–49.PubMedCrossRefGoogle Scholar
  18. Pathak, S. & N.M. Kieffer, 1979. Sterility in hybrid cattle. I. Distribution of constitutive heterochromatin and nucleolus organizer regions in somatic and meiotic chromosomes. Cytogenet. Cell Genet. 24: 42–52.PubMedGoogle Scholar
  19. Pathak, S. & N.M. Kieffer, 1980. Sterility in hybrid cattle. II. Distribution of argentophilic structures during male meiosis, pp. 77–90 in Advance Topics in Animal Reproduction, edited by F. A. M. Duarte and L. E. L. Pinheiro. Brazilian Society of Genetics.Google Scholar
  20. Pathak, S., P. Van Tuinen & D.E. Merry, 1982. Heterochromatin, synaptonemal complex, and NOR activity in the somatic and germ cells of a male domestic dog, Canis familiaris (Mammalia, Canidae). Cytogenet. Cell Genet. 34: 112–118.PubMedGoogle Scholar
  21. Rao, P.N. & K.S. Rai, 1987. Comparative karyotypes and chromosomal evolution in some genera of Nematocerous (Diptera: Nematocera) families. Ann. Entomol. Soc. Am. 80: 321–332.Google Scholar
  22. Sousa, R.C. & H.E. M.C. Bicudo, 1998. X chromosome heterochromatic pattern and nucleolar synthesis in pupal ovaries of Aedes aegypti. Cytobios 93: 185–193.Google Scholar
  23. Sumner, A.T., 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75: 304–306.PubMedCrossRefGoogle Scholar
  24. Wallace, A.J. & M.E. Newton, 1987. Heterochromatin diversity and cyclic responses to selective silver staining in Aedes aegypti (L.). Chromosoma 95: 89–93.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Rita de Cássia de Sousa
    • 1
  • Hermione Elly Melara de Campos Bicudo
    • 1
  1. 1.Departamento de Biologia, Instituto de Biociências, Letras e Ciências ExatasUniversidade Estadual Paulista (IBILCE/UNESP)São José do Rio Preto, SPBrazil

Personalised recommendations