Advertisement

Journal of Applied Electrochemistry

, Volume 29, Issue 8, pp 895–902 | Cite as

Electrochemical water disinfection. Part II: Hypochlorite production from potable water, chlorine consumption and the problem of calcareous deposits

  • A. Kraft
  • M. Blaschke
  • D. Kreysig
  • B. Sandt
  • F. Schröder
  • J. Rennau
Article

Abstract

The electrolytic production of hypochlorite from tap water in a flow-through reactor system is investigated using stacked platinum or iridium oxide coated titanium sheet or expanded metal electrodes. The influence of fast chlorine consumption and polarity reversal on the hypochlorite production rate was determined along with the dependence of the hypochlorite production rate on temperature, flow through velocity and current density. It was found that in most cases, the hypochlorite production rate was higher on iridium oxide compared to platinum electrodes. An increase in the flow-through velocity leads to an increased hypochlorite production rate while the hypochlorite production rate falls with increasing temperature.

chlorine evolution hypochlorite iridium oxide platinum water disinfection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Reis, GIT Fachz. Lab. 20 (1976) 197–204 (in German).Google Scholar
  2. 2.
    G.E. Stoner, G.L. Cahen, Jr., M. Sachyani and E. Gileadi, Bioelectrochem. Bioenerg. 9 (1982) 229–243.Google Scholar
  3. 3.
    G. Patermarakis and E. Fountoukidis, Water Res. 24 (1990) 1491–1496.Google Scholar
  4. 4.
    M. Schöberl, Eur. Pat. EP 0 515 628 B1. (1991).Google Scholar
  5. 5.
    N. Kanekuni, N. Shono, M. Kiyohara, K. Tabata, S. Kono and M. Hayakawa, Eur. Pat. Appl. EP 0 711 730 A1. (1995).Google Scholar
  6. 6.
    A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder and J. Rennau, J. Appl. Electrochem. 29 (1999) 861–868.Google Scholar
  7. 7.
    A.R. Despic, M.M. Jaksic and B.Z. Nikolic, J. Appl. Electrochem. 2 (1972) 337–343.Google Scholar
  8. 8.
    B.M. Saunier and R.E. Sellek, J.A.W.W.A. 71 (1972) 297–332.Google Scholar
  9. 9.
    L. Kiene, W. Yu and Y. Levi, C.R. A.W.W.A., Annual Conference, San Antonio, (1993), pp. 503–511.Google Scholar
  10. 10.
    J.-F. Yan, T.V. Nguyen, R.E. White and R.B. Griffin, J. Electrochem. Soc. 140 (1993) 733–742.Google Scholar
  11. 11.
    J.-F. Yan, R.E. White and R.B. Griffin, J. Electrochem. Soc. 140 (1993) 1275–1280.Google Scholar
  12. 12.
    C. Gabrielli, M. Keddam, H. Perrot, A. Khalil, R. Rosset and M. Zidoune, J. Appl. Electrochem. 26 (1996) 1125–1132.Google Scholar
  13. 13.
    C.-Y. Chan, K.H. Khoo, T.K. Lim and A.T. Kuhn, Surf. Technol. 15 (1982) 383–394.Google Scholar
  14. 14.
    A.T. Kuhn and R.B. Lartey, Chemie-Ing. Techn. 47 (1975) 129–35.Google Scholar
  15. 15.
    G.H. Kelsall, I. Chem. E. Symp. No. 127, ‘Electrochemical Engineering and the Environment’, (1992) pp. 71–83.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. Kraft
    • 1
  • M. Blaschke
    • 1
  • D. Kreysig
    • 2
  • B. Sandt
    • 2
  • F. Schröder
    • 2
  • J. Rennau
    • 2
  1. 1.Gerus mbHBerlinGermany
  2. 2.AQUA Butzke-Werke AGLudwigsfeldeGermany

Personalised recommendations