Advertisement

Journal of Applied Electrochemistry

, Volume 29, Issue 7, pp 859–866 | Cite as

Electrochemical water disinfection Part I: Hypochlorite production from very dilute chloride solutions

  • A. Kraft
  • M. Stadelmann
  • M. Blaschke
  • D. Kreysig
  • B. Sandt
  • F. Schröder
  • J. Rennau
Article

Abstract

Electrolytic production of hypochlorite in very dilute chloride solutions is investigated using platinum and iridium oxide coated titanium expanded metal electrodes as anodes. The dependence of the hypochlorite production rate on temperature, chloride concentration and current density was determined. It was found that the hypochlorite production rate is consistently higher on iridium oxide coated titanium compared to platinum coated titanium electrodes.

chlorine evolution hypochlorite iridium oxide platinum water disinfection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.S. Burney, In: R.E. White, B.E. Conway and J.O'M. Bockris (eds) Modern Aspects in Electrochemistry No. 24, Plenum Press, New York (1993) pp. 393–438.Google Scholar
  2. 2.
    G. Bianchi, J. Appl. Electrochem. 1 (1971) 213–43.Google Scholar
  3. 3.
    A.R. Despic, M.M. Jaksic and B.Z. Nikolic, J. Appl. Electrochem. 2(1972) 337–43.Google Scholar
  4. 4.
    A.T. Kuhn and R.B. Lartey, Chemie-Ing. Techn. 47 (1975) 129–35.Google Scholar
  5. 5.
    S. Trasatti, Electrochim. Acta 32 (1987) 369–82.Google Scholar
  6. 6.
    H.-J. Heidrich, L. Muüller and B.I. Podlovchenko, J. Appl. Electrochem. 20 (1990) 686–91.Google Scholar
  7. 7.
    S. Trasatti, Electrochim. Acta 36 (1991) 225–41.Google Scholar
  8. 8.
    C. Boxall and G.H. Kelsall, I. Chem. E. Symp. No. 127, Electrochemical Engineering and the Environment (1992) pp. 59–70.Google Scholar
  9. 9.
    M. Rudolf, I. Rousar and J. Krysa, J. Appl. Electrochem. 25 (1995) 155–65.Google Scholar
  10. 10.
    C.-C. Hu, C.-H. Lee and T.-C. Wen, J. Appl. Electrochem. 26 (1996) 72–82.Google Scholar
  11. 11.
    V. Rengarajan, G. Sozhan and K.C. Narasimham, Bull. Electro-chem. 12 (1996) 327–8.Google Scholar
  12. 12.
    A. Reis, GIT Fachz. Lab. 20 (1976) 197–204 (in German).Google Scholar
  13. 13.
    G.E. Stoner, G.L. Cahen, Jr., M. Sachyani and E. Gileadi, Bioelectrochem. Bioenerg. 9 (1982) 229–43.Google Scholar
  14. 14.
    G. Patermarakis and E. Fountoukidis, Wat. Res. 24 (1990) 1491–6.Google Scholar
  15. 15.
    M. Borneff, Gwf-wasser/abwasser 122 (1981) 141–6 (in German).Google Scholar
  16. 16.
    G.C. White, Handbook on Chlorination, Van Nostrand-Reinhold, Princeton, NJ.Google Scholar
  17. 17.
    L. Kiene, W. Yu and Y. Levi, C.R. A.W.W.A., Annual Confer-ence, San Antonio (1993) pp. 503–11.Google Scholar
  18. 18.
    F. Merten, Der Chemielaborant, Teil 1, Schroedel Schulbuchverlag, Hannover. 1986Google Scholar
  19. 19.
    A. Kraft, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder and J. Rennau, J. Appl. Electrochem. (part II of this article, to be printed in 29:8)Google Scholar
  20. 20.
    J.-F. Yan, T.V. Nguyen, R.E. White and R.B. Griffin, J. Electro-chem. Soc. 140 (1993) 733–42.Google Scholar
  21. 21.
    J.-F. Yan, R.E. White and R.B. Griffin, J. Electrochem. Soc. 140 (1993) 1275–80.Google Scholar
  22. 22.
    A.T. Kuhn, H. Hamzah and G.C.S. Collins, J. Chem. Tech. Biotech. 30 (1980) 423–8.Google Scholar
  23. 23.
    V. de Valera, Trans. Faraday Soc. 49 (1953) 1339–51.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • A. Kraft
    • 1
  • M. Stadelmann
    • 1
  • M. Blaschke
    • 1
  • D. Kreysig
    • 2
  • B. Sandt
    • 2
  • F. Schröder
    • 2
  • J. Rennau
    • 2
  1. 1.Gerus mbHBerlinGermany
  2. 2.AQUA Butzke-Werke AGLudwigsfeldeGermany

Personalised recommendations