Advertisement

Euphytica

, Volume 108, Issue 3, pp 199–214 | Cite as

Production of fertile hybrid germplasm with diploid Australian Gossypium species for cotton improvement

  • C.L. Brubaker
  • A.H.D. Brown
  • J.McD. Stewart
  • M.J. Kilby
  • J.P. Grace
Article

Abstract

The 17 wild Australian Gossypium species are distant diploid relatives of the commercial tetraploid cottons, G. barbadense L. and G. hirsutum L. They interest cotton breeders as a source of terpenoid-aldehyde-free seeds, a trait only found in five Australian Gossypium species. They elicit further interest because some species grow near current and projected cotton growing areas in Australia and thus could serve as unintentional recipients of transgenes from genetically engineered cotton cultivars. The utility of the wild Australian Gossypium species in cotton breeding depends on the ability to generate fertile hybrids, and to the extent this is possible under glasshouse conditions, it allows predictions regarding the probability that fertile hybrids between the transgenic cottons and spatially associated populations of wild species will arise without human manipulation. The Australian Gossypium species fall into three morphologically and cytologically distinct groups designated the C, G, and K genomes, The G-genome species hybridize most readily with G. arboretum (a diploid A-genome cultivated cotton), while the C- and K-genome species are more compatible with G. hirsutum (a tetraploid AD-genome cultivated cotton). These intergenomic hybrids are sterile, and the chromosome complement of the hybrids must be doubled prior to backcrossing to G. hirsutum. The only exceptions were four G. hirsutum × K-genome triploids, which exhibited limited female fertility when backcrossed to G. hirsutum. Two of the three diploid species geographically associated with commercial cotton fields (G. australe F. Mueller & G. rotundifolium Fryxell, Craven & Stewart) failed to produce hybrid progeny when pollinated with G. hirsutum pollen; the third species (G. sturtianum J.H. Willis) produced only 5 sterile triploids from 25 pollinations. Thus, the probability that wild species could serve as recipients of transgenes is functionally zero, especially in conjunction with the profound prezygotic barriers that separate the cultivated tetraploid cottons from their wild Australian relatives. Eighteen new fertile synthetic polyploids and 23 self-fertile derivatives of two synthetic hexaploids were produced. Synthetic tetraploids require greater effort to backcross than do synthetic hexaploids. These fertile hybrids represent a new avenue of introgression of genes from wild Australian Gossypium species into commercial cotton cultivars, an avenue limited only by the level of recombination.

breeding cotton germplasm Gossypium hybrids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, D.W., D.M. Stelly & R.J. Kohel, 1987. Introgression of the glanded-plant and glandless-seed trait from Gossypium sturtianum Willis into cultivated upland cotton using ovule culture. Crop Sci 27: 880–884.CrossRefGoogle Scholar
  2. Amin, K.C., 1940. Interspecific hybridization between Asiatic and New World cottons. Ind J Agr Sci 10: 404–413.Google Scholar
  3. Beasley, J.O., 1940. The production of polyploids in Gossypium. J Hered 31: 39–48.Google Scholar
  4. Beasley, J.O., 1941. Hybridization, cytology, and polyploidy of Gossypium. Chron Bot 6: 394–395.Google Scholar
  5. Bell, A.A., 1984. Morphology, chemistry, and genetics of Gossypium adaptations to pests. In: B.N. Timmermann, C. Steelink & F.A. Loewus (Eds), Recent Advances in Phytochemistry, pp. 197–230, New York, New York.Google Scholar
  6. Bell, A.A. & R.D. Stipanovic, 1977. The chemial composition, biological activity, and genetics of pigment glands in cotton. Proceedings of the Beltwide Cotton Production Research Conference, pp. 244–258, National Cotton Council of America, Memphis, TN.Google Scholar
  7. Bell, A.A.., R.D. Stipanovic, G.W. Elzen & H.J. Williams Jr., 1987. Structural and genetic variation of natural pesticides in pigment glands of cotton (Gossypium). In G.R. Waller (Ed), Allelochemicals: Role in Agriculture and Forestry, pp. 477–490, Washington, DC.Google Scholar
  8. Bell, A.A., R.D. Stipanovic, M.E. Mace & R.J. Kohel, 1994. Genetic manipulation of terpenoid phytoalexins in Gossypium: effects on disease resistance. In: B.E. Ellis, G.W. Kuroki & H.A. Stafford (Eds), Genetic Engineering of Plant Secondary Metabolism, pp. 231–249, New York, New York.Google Scholar
  9. Brown, A.H.D., C.L. Brubaker & M.J. Kilby, 1997. Assessing the risk of cotton transgene escape into wild Australian Gossypium species. In: G.D. McLean, P.M. Waterhouse, G. Evans & M.J. Gibbs (Eds), Commercialisation of Transgenic Crops: Risk, Benefit and Trade Considerations. Proceedings of a workshop, Canberra, 11–13 March 1997, pp. 83–94, Canberra, Australia.Google Scholar
  10. Brown, M.S., 1951. The spontaneous occurrence of ampliploidy in species hybrids of Gossypium. Evolution 5: 25–41.CrossRefGoogle Scholar
  11. Brown, M.S. & M.Y. Menzel, 1952. Polygenomic hybrids in Gossypium. I. Cytology of hexaploids, pentaploids and hexaploid combinations. Genetics 37: 242–263.PubMedGoogle Scholar
  12. Brubaker, C.L., C.G. Benson, C. Miller & D.N. Leach, 1996. Occurrence of terpenoid aldehydes and lysigenous cavities in the glandless seeds of Australian Gossypium Species. Austral J Bot 44: 601–612.CrossRefGoogle Scholar
  13. Cook, S.A. & R.G. Stanley, 1960. Tetrazolium chloride as an indicator of pine pollen germinability. Silv Genet 9: 134–136.Google Scholar
  14. Dilday, R.H., 1986. Development of a cotton plant with glandless seeds, and glanded foliage and fruiting forms. Crop Sci 26: 639–641CrossRefGoogle Scholar
  15. Endrizzi, J.E., E.L. Turcotte & R.J. Kohel, 1985. Genetics, cytology, and evolution of Gossypium. Adv Agron 23: 271–375.Google Scholar
  16. Fryxell, P.A., 1992. A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2: 108–165.Google Scholar
  17. Gerstel, D.U., 1954. A new lethal combination in interspecific cotton hybrids. Genetics 39: 628–639.PubMedGoogle Scholar
  18. Gwyn, J.J. & D.M. Stelly, 1989. Method to evaluate pollen viability in Upland cotton: Tests with chromosome translocations. Crop Sci 29: 1165–1169.CrossRefGoogle Scholar
  19. Harlan, J.R. & J.M.J. de Wet, 1971. Toward a rational classification of cultivated plants. Taxon 20: 509–517.CrossRefGoogle Scholar
  20. Hau, B., 1981. Lignées d'addition sur l'espèce Gossypium hirsutum L. I. Utilisation de l'hybridation interspécifique et de la méthode des lignées d'addition pour l'amélioration du cotonnier. Coton et Fibres Tropicales 36: 247–258.Google Scholar
  21. He, J. & C. Sun, 1994. A scheme for introgression of delayed gland morphogenesis gene from wild Gossypium into cultivated cotton (G. hirsutum). Act Genet Sin 21: 52–58.Google Scholar
  22. Li, B.L., B.J. Zhang, X.R. Zhang & Y.Z. Niu, 1987. Studies on the hybridization between Gossypium arboreum and G. bickii. Act Genet Sin 14: 121–126.Google Scholar
  23. Iyengar, N.K., 1945. Cytological investigations on some of the interspecific hybrids of (American × Asiatic) × American cottons and their progenies. Ind J Genet Plant Breeding 5: 32–45.Google Scholar
  24. Koto, E, 1989. Tentative de transfert du caractère ‘retard à la morphogénése des glandes à gossypol’ I. Caractéristiques des hexaploïds G. hirsutum × G. sturtianum et G. hirsutum × G. australe. 1re Conférence de la recherche cotonnière africaine, Lomé, Togo, 31 Janv.-2 Fév., 1989, IRCT, Montpellier, tome I, 167–173.Google Scholar
  25. Maréchal, R., 1974. Analyses de la conjugaison méiotique chez les hybrides triploïdes entre Gossypium hirsutum L. et des espèces sauvages australiennes. Bulletin des Recherches Agronomiques de Gembloux 9: 193–204.Google Scholar
  26. Maréchal, R., 1983. Une collection d'hybrides interspécifiques du genre Gossypium. Coton et Fibres Tropicales 38: 240–246.Google Scholar
  27. Meredith, W.R.J., 1991. Contributions of introductions to cotton improvement. In: H.L. Shands & L.E. Wiesner (Eds), Use of Plant Introductions in Cultivar Development, pp. 127–146, Crop Science Society of America, Madison, Wisconsin.Google Scholar
  28. Mergeai, G., I. Vroh Bi, J.P. Baudoin & P. du Jardin, 1998. Use of random amplified polymorphic DNA (RAPD) markers to assist wide hybridization in cotton. In: Y.P.S. Bajaj (Ed), Biotechnology in Agriculture and Forestry, Vol. 42, Cotton, pp. 121–139, Springer-Verlag, Berlin.Google Scholar
  29. Mergeai, G., I. Vroh Bi, P. du Jardin & J.P. Baudoin, 1995. Introgression of glanded-plant and glandless-seed trait from G. sturtianum Willis into tetraploid cotton plants. Proceedings of the Beltwide Cotton Conferences, pp. 513–514, National Cotton Conference Council, Memphis, TN.Google Scholar
  30. Meyer, V.G., 1974. Interspecific cotton breeding. Econ Bot 28: 56–60.Google Scholar
  31. Mursal, I.E.J. & J.E. Endrizzi, 1976. A reexamination of the diploidlike meiotic behavior of polyploid cotton. Theor Appl Genet 47: 171–178.CrossRefGoogle Scholar
  32. Ndungo, V., J. Demol & R. Maréchal, 1988. L'amélioration du cotonnier Gossypium hirsutum L. par hybridation interspécifique. Bulletin des Recherches Agronomiques de Gembloux 23: 1–92.Google Scholar
  33. Phillips, L.L., 1964. Segregation in new allopolyploids of Gossypium. V. Multivalent formation in new world × Asiatic and new world × wild American hexaploids. Amer J Bot 51: 324–329.CrossRefGoogle Scholar
  34. Phillips, L.L. 1966. The cytology and phylogenetics of the diploid species of Gossypium. Amer J Bot 53: 328–335.CrossRefGoogle Scholar
  35. Phillips, L.L. & M.A. Strickland, 1966. The cytology of a hybrid between Gossypium hirsutum and G. longicalyx Can J Genet Cytol 8: 91–95.Google Scholar
  36. Skovsted, A., 1935. Some new interspecific hybrids in the genus Gossypium L. J Genet 30: 447–463.Google Scholar
  37. Skovsted, A., 1937. Cytological studies in cotton. IV. Chromosome conjugation in interspecific hybrids. J Genet 34: 97–134.Google Scholar
  38. Stephens, S.G., 1942. Colchicine-produced polyploids in Gossypium. I. An autotetraploid Asiatic cotton and certain of its hybrids with wild diploid species. J Genet 44: 272–295.CrossRefGoogle Scholar
  39. Stewart, J.McD., 1981. In vitro fertilization and embryo rescue. Environ Exp Bot 21: 301–315.CrossRefGoogle Scholar
  40. Stewart, J.McD., 1995. Potential for crop improvement with exotic germplasm and genetic engineering. In. G.A. Constable & N.W. Forrester (Eds), Challenging the Future: Proceedings of the World Cotton Research Conference-1, Brisbane Australia, February 14–17, pp. 313–327, Melbourne, Australia.Google Scholar
  41. Stewart, J.McD., L.A. Craven & J.F. Wendel, 1997. A new Australian species of Gossypium. Proceedings of the Beltwide Cotton Conferences, p. 448, National Cotton Council of America, Memphis, TN.Google Scholar
  42. Stewart, J.McD. & C.L. Hsu, 1978. Hybridization of diploid and tetraploid cottons through in-ovulo embryo culture. J Hered 69: 404–408.Google Scholar
  43. Vroh Bi, I., J.P. Baudoin & G. Mergeai, 1998. Cytogenetics of the 'glandless-seed and glanded-plant' trait from Gossypium sturtianum Willis introgressed into upland cotton (Gossypium hirsutum L.). Plant Breed 117: 235–241.CrossRefGoogle Scholar
  44. Webber, J.M., 1939. Relationships in the genus Gossypium as indicated by cytological data. J Agric Res 58: 237–261.Google Scholar
  45. Zhang, J. & J.McD. Stewart, 1997. Hybridization of new Australian Gossypium species (section Grandicalyx) with cultivated tetraploid cotton. Proceedings of the Beltwide Cotton Conferences. pp. 487–490, National Cotton Council of America, Memphis, TN.Google Scholar
  46. Zhu, S. & B. Li, 1993. Studies of introgression of the 'glandless seeds-glanded plant' trait from Gossypium bickii into cultivated Upland cotton (G. hirsutum). Coton et Fibres Tropicales 48: 195–199.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • C.L. Brubaker
    • 1
  • A.H.D. Brown
    • 1
  • J.McD. Stewart
    • 2
  • M.J. Kilby
    • 1
  • J.P. Grace
    • 1
  1. 1.Centre for Plant Biodiversity ResearchCSIRO Plant IndustryCanberraAustralia
  2. 2.Agronomy DepartmentUniversity of ArkansasFayettevilleU.S.A

Personalised recommendations