Advertisement

Hydrobiologia

, Volume 397, Issue 0, pp 155–169 | Cite as

Nematodes as indicators of pollution: a case study from the Swartkops River system, South Africa

  • T. K. Gyedu-Ababio
  • J. P. Furstenberg
  • D. Baird
  • A. Vanreusel
Article

Abstract

Nematodes from the sediments of the Swartkops estuary in Port Elizabeth, South Africa were investigated at 10 selected sites along a salinity gradient in the subtidal region at neap tide. The relation between nematode density, genera, community structure and environmental parameters including concentrations of seven heavy metals, Mn, Ti, Cr, Pb, Fe, Sn and Zn in the sediment were investigated. The nematode community structure was significantly influenced by the chlorophyll a concentration and sediment particle-size distribution. The number of genera had significant negative correlation with chlorophyll a and two heavy metals, Fe and Zn in the sediment. The habitat preferences of the genera were also assessed. A combination of the Shannon-Wiener Diversity Index (H') and the Maturity Index (MI) proved to be very useful in assessing polluted or stressed sites. The nematode communities at sites which are affected by pollution, were found to be under stress according to the density, diversity and other indices used in this study. At sites where relatively higher heavy metal concentrations occurred, variation in the nematode densities and diversity were observed. Nematode community structure at polluted sites differed significantly (p < 0.05) from those at less or no polluted sites. Monhystera spp. and Theristus spp. were found to be colonisers, and thus indicator genera for polluted sediments in this study.

nematodes estuary pollution indicator density diversity sediment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alongi, D. M. & J. H. Tietjen, 1997. Population growth and trophic interactions among free-living nematodes. In Tenore, K. R. & B. C. Coull (eds), Marine Benthic Dynamics. Columbia: Univ. of S. Calorina Press. 151–166.Google Scholar
  2. Austen, M. C. & P. J. Somerfield, 1997. A community level sediment bioassay applied to an estuarine heavy metal gradient. Mar. Environ. Res. 43: 315–328.Google Scholar
  3. Baird, D., P. E. D. Winter & G. Wendt, 1987. The flux of particulate material through a well-mixed estuary. Continental Shelf Res. 7: 1399–1403.Google Scholar
  4. Bongers, T., R. G. N. De Goede, G. W. Korthals & G. W. Yeates, 1995. Proposed changes of c-p classification of nematodes. Russian Journal of Nematology. 3 (1): 61–62.Google Scholar
  5. Bongers, T., 1990. The maturity index: An ecological measure of an environmental disturbance based on nematode species composition. Oecologia 83: 14–19.CrossRefGoogle Scholar
  6. Bongers, T. & J. Van de Haaar, 1990. On the potential of basing an ecological typology of aquatic sediments on the nematode fauna: An example from river Rhine. Hydrobiol. Bull. 24: 37–45.Google Scholar
  7. Branch, G. & M. Branch, 1981. The living shores of Southern Africa. Cape Town: Struik Publ.Google Scholar
  8. Cairns, J. J. & K. L. Dickson, 1971. A simple method for the biological assessment of the effects of waste discharges on aquatic bottom dwelling organisms. Journal WPCF 43: 755–772.PubMedGoogle Scholar
  9. Canoco-Fortran Program for Canonical Community Ordination by (partial) detrended (Canonical) Corresponcence Analysis and Redundancy Analysis. 2.1. Ter Braak, C. J. F. 1987.Google Scholar
  10. Coull, B. C., 1988. Ecology of marine meiofauna. In Higgins, R. P. & H. Thiel (eds), Introduction to the Study of Meiofauna. Washinton: Smithsonian Institute Press: 18–38.Google Scholar
  11. Croll, N. A. & G. B. Mathews, 1977. Biology of Nematodes. Glassgow: Blackie & Sons Ltd.Google Scholar
  12. Danovaro, R., M. Fabiano & M. Vincx, 1995. Meiofauna response to the Agip Abruzzo oil spill in the subtidal sediments of the Ligurian Sea. Mar. Poll. Bull. 30: 133–145.Google Scholar
  13. Dye, A. H., 1977. An ecophysiological study of the benthic meiofauna of the Swartkops estuary. Zoo. Dept., Univ. of Port Elizabeth. General ecology of the nematodes.Google Scholar
  14. Eleftheriou, A., D. C. Moore, D. J. Basford & M. R. Robertson, 1982. Underwater experiments on the effects of sewage sludge on a marine ecosystem. Neth. J. Sea Res. 16: 465–475.Google Scholar
  15. Ferris, V. R. & J. M. Ferris, 1979. Threadworms (Nematoda). In Hart, C. W. Jnr. & S. L. H. Fuller (eds), Pollution Ecology of Estuarine Invertebrates. Academic Press: 1–33.Google Scholar
  16. Furstenberg, J. P., A. H. Dye & A. G. De Wet, 1978. Quantitative extraction of meiofauna: A comprison of two methods. Zool. Afr. 13: 175–186.Google Scholar
  17. Gee, M. J. & R.M. Warwick, 1985. Effects of organic enrichment on abundance and community structure in sublittoral soft sediments I. Mar. Biol. Ecol. 91: 247–262.Google Scholar
  18. Giere, O., 1993. The microscopic fauna in aquatic sediments: In Meiobenthology. Springer-Verlag.Google Scholar
  19. Goede, R. G. M., T. Bonger & C. H. Ettema, 1993. Graphical presentation and interpretation of nematode community structure: c-p triangles. Mededelingen Faculteit Landbouwkundige en toegepaste biologische weienschappen, Universiteit Gent 58/2b: 743–750.Google Scholar
  20. Heip, C., M. Vincx & G. Vranken, 1985. The ecology of marine nematodes. Oceanog. mar. Biol. Ann. Rev. 23: 399–489.Google Scholar
  21. Heip, C., M. Vincx, N. Smol & G. Vranken, 1982. The systematics and ecology of free-living marine nematodes. Commonwealth Institute of Parasitology: Helminthological Abstracts SeriesB-PlantNematology 51: 1–31.Google Scholar
  22. Heip, C., R. M. Warwick, M. R. Carr, P. M. J. Herman, R. Huys, N. Smol & K. Van Holsbeke, 1988. Analysis of community attributes of the benthic meiofauna of Frierfjord/Langesundfjord. Mar. Ecol. Prog. Ser. 171–180.Google Scholar
  23. Herman, P. M. J. & C. Heip, 1988. On the use of meiofauna in ecological monitoring: who needs taxonomy? Mar. Poll. Bull. 12: 665–668.Google Scholar
  24. Hicks, G. R. F. & B. C. Coull, 1983. The ecology of marine meiobenthic harpacticoid copepods. Oceanog. mar. Biol. Ann. Rev. 21: 67–75.Google Scholar
  25. Hill, M. O., 1979. Twinspan - A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and the attributes. In Anonymous, Ecology and Systematics. New York: Cornell Univ. 1–48.Google Scholar
  26. Hockin, D. C., 1983. The effects of organic enrichment upon a community of meiobenthic harpacticoid copepods. Mar. Envir. Res. 10: 45–58.Google Scholar
  27. Jensen, P., 1984. Ecology of benthic and epiphytic nematodes in brackish water. Hydrobiol. 108: 201–217.Google Scholar
  28. McLusky, D. S., 1981. The Estuarine Ecosystem. Glasgow, London: Blackie & Sons Ltd.Google Scholar
  29. Moore, C. G. & B. J. Bett, 1989. The use of meiofauna in marine pollution impact assessment. Zoological Journal of the Linean Society 96: 263–280.Google Scholar
  30. Nicholas, W. L., 1975. The biology of free living marine nematodes. Oxford: Claredon Press.Google Scholar
  31. Orren, M. J., G. A. Eagle, P. G. Greenwood & H. F.-K. O. Henning, 1979. Preliminary pollution surveys around the South-Western Cape Coast. Part 3: Hout Bay. S. Afr. J. Sci. 75: 459–461.Google Scholar
  32. Parker, S., 1983. Determination of siol organic content. In Carver, R. E. (ed.), Procedures in Sediment Petrology. New York: John Willey & Sons: 389–401.Google Scholar
  33. Platt, H. M., K. M. Shaw & P. J. D. Lambshead, 1984. Nematode species abundance patterns and their use in the detection of environmental perturbations. Hydrobiologia 118: 59–66.Google Scholar
  34. Platt, H. M. & R. M. Warwick, 1988. Freeliving marine nematodes, Part II: British Chromadorids. Cambridge Univ. Press.Google Scholar
  35. Rodriguez, F. D. G., 1993. The determination and distribution of chlorophyll a in selected South Cape estuaries.Google Scholar
  36. Smol, N., K. A. Willems, J. C. R. Govaere & A. J. J. Sandee, 1994. Composition, distribution, biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282/283: 197–217.Google Scholar
  37. Soetaert, K., M. Vincx, J. Wittoek & M. Tulkens, 1995. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311: 185–206.Google Scholar
  38. Tietjen, J. H., 1967. Observations on the ecology of the marine nematode, Monhystera filicaudata Allgen 1929. Trans. a. microsc. Soc. 86: 304–306.Google Scholar
  39. Vanreusel, A., 1990. Ecology of free-living marine nematodes in the Voordelta (Southern Bight of the North Sea).I. Species composition and the structure of the nematode communities. Cah. Biol. mar. 31: 439–462.Google Scholar
  40. Vanreusel, A., 1991. Ecology of free-living marine nematodes of the Voordelta (Southern Bight of the North Sea).II. Habitat preferences of the dominant species. Nematologica. 37: 343–359.Google Scholar
  41. Vincx, M., 1989. Free-living marine nematodes from the southern Bight of the North Sea. Mar. Ecol. Prog. Ser. 46: 207–211.Google Scholar
  42. Vincx, M., P. Meire & C. Heip, 1990. The distribution of nematode communities in Southern Bight of the North Sea. Cah. Biol. mar. 31: 107–129.Google Scholar
  43. Watling, R. J. & H. R. Watling, 1982. Metal surveys in South African estuaries. I. Swartkops river. WaterSA. 8: 26–35.Google Scholar
  44. Warwick, R. M., 1988. The level of taxanomic discrimination required to detect pollution effects on marine benthic communities. Mar. Poll. Bull. 19: 259–268.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • T. K. Gyedu-Ababio
    • 1
  • J. P. Furstenberg
    • 1
  • D. Baird
    • 1
  • A. Vanreusel
    • 2
  1. 1.Zoology DepartmentUniversity of Port ElizabethRSA
  2. 2.Marine Biology SectionUniversity of GhentGentBelgium

Personalised recommendations