International Journal of Theoretical Physics

, Volume 39, Issue 7, pp 1887–1900 | Cite as

Eternal Inflation, Black Holes, and the Future of Civilizations

  • J. Garriga
  • V. F. Mukhanov
  • K. D. Olum
  • A. Vilenkin


We discuss the large-scale structure of the universe in inflationary cosmologyand the implications that it may have for the long-term future of civilizations.Although each civilization is doomed to perish, it may be possible to transmitits accumulated knowledge to future civilizations. We consider several scenariosof this sort. If the cosmological constant is positive, it eventually dominates theuniverse and bubbles of inflationary phase begin to nucleate at a constant rate.Thermalized regions inside these inflating bubbles will give rise to new galaxiesand civilizations. It is possible in principle to send a message to one of them. Itmight even be possible to send a device whose purpose is to recreate anapproximation of the original civilization in the new region. However, the messageor device will almost certainly be intercepted by black holes, which nucleate ata much higher rate than inflating bubbles. Formation of new inflating regionscan also be triggered by gravitational collapse, but again the probability is low,and the number of attempts required for a positive outcome is enormous. Theprobability can be higher if the energy scale of inflation is closer to the Planckscale, but a high energy scale produces a tight bound on the amount of informationthat can be transmitted. One can try to avoid quantum tunneling altogether, butthis requires a violation of quantum inequalities which constrain the magnitudeof negative energy densities. However, the limits of validity of quantuminequalities are not clear, and future research may show that the required violationis in fact possible. Therein lies the hope for the future of civilizations.


Black Hole Energy Density Field Theory Quantum Field Theory Cosmological Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic, Chur, Switzerland, 1990).Google Scholar
  2. 2.
    A, Vilenkin, Phys. Rev. D 27, 2848 (1983).Google Scholar
  3. 3.
    A. D. Linde, Phys. Lett. B 175, 395 (1986).Google Scholar
  4. 4.
    A. A. Starobinsky, In Lecture Notes in Physics, Vol. 246 (Springer, Heidelberg, 1986).Google Scholar
  5. 5.
    V. Vanchurin, A. Vilenkin, and S. Winitzki, gr-qc/9905097.Google Scholar
  6. 6.
    J. Garriga and V. F. Mukhanov, Phys. Lett. B, appear, hep-th/9904176. 1900 Garriga et al. Google Scholar
  7. 7.
    F. J. Dyson, Rev. Mod. Phys. 51, 447 (1979).Google Scholar
  8. 8.
    L. M Krauss and G. D. Starkman, astro-ph/9902189, CWRU-P1-99.Google Scholar
  9. 9.
    S. Perlmutter et al., Ap. J. 483, 56 (1997); S. Perlmutter et al., astro-ph/9812473 (1998); B. Schmidt et al., Ap. J. 507, 46 (1998); A. J. Riess et. al., Ap. J. 116, 1009 (1998).Google Scholar
  10. 10.
    J. Garriga and A. Vilenkin, Phys. Rev. D 57, 2230 (1998).Google Scholar
  11. 11.
    K. Lee and E. J. Weinberg, Phys. Rev. D 36, 1088 (1987).Google Scholar
  12. 12.
    E. Farhi, A. H. Guth, and J. Guven, Nucl. Phys. B 339, 417 (1990).Google Scholar
  13. 13.
    G. 't Hooft, In Salam Festschrift: A Collection of Talks, A. Ali, J. Ellis, and R Randjbar-Daemi (World Scientific, Singapore, 1993); L. Susskind, J. Math. Phys. 36, 6377 (1995).Google Scholar
  14. 14.
    J. Bekenstein, Phys. Rev. D 9, 3292 (1974); S. W. Hawking, Phys. Rev. D 14, 2460 (1976).Google Scholar
  15. 15.
    H. Nariai, Sci. Rep. Tohoku Univ. Ser. I 35, 62 (1951).Google Scholar
  16. 16.
    E. Farhi and A. H. Guth, Phys. Lett. 183B, 149 (1987).Google Scholar
  17. 17.
    L. H. Ford and T. A. Roman, Phys. Rev. D 55, 2082 (1997).Google Scholar
  18. 18.
    A. D. Linde, Nucl. Phys. B 372, 421 (1992).Google Scholar
  19. 19.
    D. Solomon, Negative energy density for a Dirac¶Maxwell field, gr-qc/9907060.Google Scholar
  20. 20.
    H. B. G. Casimir, Proc. K. Ned. Akad. Wet. B 51, 793 (1948); but see A. D. Helfer and A. S. Lang, J. Phys. A 32, 1937 (1999).Google Scholar
  21. 21.
    V. P. Frolov, M. A. Markov, and V. F. Mukhanov, Phys. Lett. B 216, 272 (1989); Phys. Rev. D 41, 383 (1990).Google Scholar
  22. 22.
    M. Visser, Lorentzian Wormholes from Einstein to Hawking (AIP Press, New York, 1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • J. Garriga
    • 1
    • 2
  • V. F. Mukhanov
    • 3
  • K. D. Olum
    • 2
  • A. Vilenkin
    • 2
  1. 1.IFAE, Departament de FisicaUniversitat Autonoma de BarcelonaBarcelonaSpain
  2. 2.Institute of Cosmology, Department of Physics and AstronomyTufts UniversityMedford
  3. 3.Sektion PhysikLudwig Maximilians UniversitätMunichGermany

Personalised recommendations