Euphytica

, Volume 106, Issue 3, pp 261–270

Genetic variability of forage grass cultivars: A comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L.

  • R. Kölliker
  • F.J. Stadelmann
  • B. Reidy
  • J. Nösberger
Article
  • 317 Downloads

Abstract

Three widely used cultivars of each of the species Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L. were investigated by means of randomly amplified polymorphic DNA (RAPD) markers and vegetative growth traits in order to investigate genetic variability within each cultivar and to compare the level of diversity among cultivars and species. RAPD markers allowed a clear separation of the three species. Genetic variability based on RAPD markers was considerably lower for F. pratensis cultivars than for L. perenne and D. glomerata cultivars which showed similar levels of variability. The proportion of variability due to variation within cultivars, determined by an analysis of molecular variance, was lower in F. pratensis (64.6%) than in L. perenne (82.4%) and D. glomerata (85.1%). A comparison of F. pratensis and L. perenne, based on vegetative growth traits, confirmed the differences in genetic variability within cultivars. F. pratensis showed lower coefficients of genetic variation for eight of ten traits when compared to L. perenne. This study demonstrates considerable differences in genetic variability which may have consequences for the adaptability and persistency of individual cultivars.

Dactylis glomerata L. Festuca pratensis Huds. genetic variability Lolium perenne L. RAPD markers vegetative growth traits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aastveit A.H. & K. Aastveit, 1989. Genetic variations and inheritance of quantitative characters in two populations of meadow fescue (Festuca pratensis Huds.) and their hybrid. Hereditas 111: 103–114.Google Scholar
  2. Backhaus K., B. Erichson, W. Plinke & R. Weiber, 1996. Multivariate Analysemethoden: eine anwendungsorientierte Einführung. 8th ed., Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  3. Beer S.C., J. Goffreda, T.D. Phillips, J.P. Murphy & M.E. Sorrells, 1993. Assessment of genetic variation in Avena sterilis using morphological traits, isozymes, and RFLPs. Crop Sci 33: 1386–1393.CrossRefGoogle Scholar
  4. Bradshaw A.D., 1965. Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13: 115–155.CrossRefGoogle Scholar
  5. Bradshaw A.D., 1984. Ecological significance of genetic variation between populations. In: R. Dirzo & J. Sarukhan (Eds), Perspectives on plant population ecology, pp. 213–228. Sinauer Associates Inc., Massachusetts.Google Scholar
  6. Brock J.L., D.E. Hume & R.H. Fletcher, 1996. Seasonal variation in the morphology of perennial ryegrass (Lolium perenne) and cocksfoot (Dactylis glomerata) plants and populations in pastures under intensive sheep grazing. J Agr Sci 126: 37–51.CrossRefGoogle Scholar
  7. Bulinska-Radomska Z. & R.N. Lester, 1988. Intergeneric relationships of Lolium, Festuca and Vulpia (Poaceae) and their phylogeny. Plant Syst Evol 159: 217–227.CrossRefGoogle Scholar
  8. Charleswort D. & B. Charlesworth, 1995. Quantitative genetics in plants. The effect of the breeding system on genetic variability. Evolution 49: 911–920.CrossRefGoogle Scholar
  9. Charmet G. & F. Balfourier, 1994. Isozyme variation and species relationships in the genus Lolium L. (ryegrasses, Graminaceae). Theor Appl Genet 87: 641–649.CrossRefGoogle Scholar
  10. Dolan R.W., 1994. Patterns of isozyme variation in relation to population size isolation and phytogeographic history in royal catchfly (Silene regia; Carophyllaceae). Am J Bot 81: 965–972.CrossRefGoogle Scholar
  11. Doyle J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  12. Excoffier L., P.E. Smouse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  13. Fernando W.M.U., M.D. Hayward & M.J. Kearsey, 1997. Isozyme and quantitative traits polymorphisms in European provenances of perennial ryegrass (Lolium perenne L). Euphytica 93: 263–269.CrossRefGoogle Scholar
  14. Gügler B., 1993. Die Konkurrenz zwischen Wiesenschwingel (Festuca pratensis Huds.) und Knaulgras (Dactylis glomerata L.) bei verschiedener Bewirtschaftung (Competition between meadow fescue and orchard grass as related to cultivation). PhD thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.Google Scholar
  15. Gunter L.E., G.A. Tuskan & S.D. Wullschleger, 1996. Diversity among populations of switchgrass based on RAPD markers. Crop Sci 36: 1017–1022.CrossRefGoogle Scholar
  16. Hammer P.A., T.W. Tibbitis, R.W. Langhans & J.C. McFarlane, 1978. Baseline growth studies of ‘Grand Rapids’ lettuce in controlled environment. J Am Soc Hortic Sci 103: 649–655.Google Scholar
  17. Hayward M.D., 1997. Enhancing the value of pastures by breeding. In: B. Boller & F.J. Stadelmann (Eds), Breeding for a multifunctional agriculture, pp. 83–86. Proc. 21th meeting of the fodder crops and amenity grasses section of Eucarpia, 9 to 12 September 1997, Kartause Ittigen, Switzerland.Google Scholar
  18. Helgadottir A. & R.W. Snaydon, 1986. Patterns of genetic variation among populations of Poa pratensis L. and Agrostis capillaris L. from Britain and Iceland. J Appl Ecol 23: 703–719.CrossRefGoogle Scholar
  19. Huff D.R., 1997. RAPD characterization of heterogeneous perennial ryegrass cultivars. Crop Sci 37: 557–564.CrossRefGoogle Scholar
  20. Huff D.R., R. Peakall & P.E. Smouse, 1993. RAPD variation within and among natural populations of outcrossing buffalo grass [Buchloe dactyloides (Nutt.) Engelm.]. Theor Appl Genet 86: 927–934.CrossRefGoogle Scholar
  21. Jung G.A., A.J.P. van Wijk, W.F. Hunt & C.E. Watson, 1996. Ryegrasses. In: L.E. Moser, D.R. Buxton & M.D. Casler (Eds), Cool-season forage grasses, pp. 605–641. American Society of Agronomy, Inc., Madison.Google Scholar
  22. Kaiser H.F., 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187–200.CrossRefGoogle Scholar
  23. Kölliker R., F.J. Stadelmann, B. Reidy & J. Nösberger, 1998. Fertilization and defoliation frequency affect genetic diversity of Festuca pratensis Huds. in permanent grasslands. Mol Ecol 7: 1757–1768.CrossRefGoogle Scholar
  24. Lehmann J., H.U. Briner, E. Mosimann & P. Bassetti, 1996. Liste der empfohlenen Sorten von Futterpflanzen (List of recommended cultivars of forage plants). Agrarforschung 3: I-VIII.Google Scholar
  25. Loos B.P., 1994. Morphological variation in Dutch perennial ryegrass (Lolium perenne L.) populations, in relation to environmental factors. Euphytica 74: 97–107.CrossRefGoogle Scholar
  26. Lundqvist A., 1969. Self-incompatibility in Dactylis glomerata L. Hereditas 61: 353–360.CrossRefGoogle Scholar
  27. MacDonald S.E. & C.C. Chinnappa, 1989. Population differentiation for phenotypic plasticity in the Stellaria longipes complex. Amer J Bot 76: 1627–1637.CrossRefGoogle Scholar
  28. Rohlf F.J., 1993. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. Exter Publishers, Setauket, NY.Google Scholar
  29. Petit C., J.D. Thompson & F. Bretagnolle, 1996. Phenotypic plasticity in relation to ploidy level and corm production in the perennial grass Arrhenatherum elatius. Can J Bot 74: 1964–1973.Google Scholar
  30. Scheiner S.M., 1993. Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24: 35–68.CrossRefGoogle Scholar
  31. Schierenbeck K.A., M. Skupski, D. Lieberman & M. Lieberman, 1997. Population structure and genetic diversity in four tropical tree species in Costa Rica. Mol Ecol 6: 137–144.CrossRefGoogle Scholar
  32. Silvertown J.W. & J. Lovett Doust, 1993. Introduction to plant population biology. Blackwell Scientific Publications, Oxford.Google Scholar
  33. Sokal R.R. & F.J. Rohlf, 1995. Biometry. The Principles and Practice of Statistics in Biological Research, 3rd edn., WH Freeman and Company, New York.Google Scholar
  34. Soltis D.E. & P.S. Soltis, 1993. Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12: 243–273.Google Scholar
  35. Stammers M., J. Harris, G.M. Evans, M.D. Hayward & J.W. Forster, 1995. Use of random PCR (RAPD) technology to analyse phylogenetic relationships in the Lolium/Festuca complex. Heredity 74: 19–27.PubMedGoogle Scholar
  36. Templeton A.R., 1994. Biodiversity at the molecular genetic level: experiences from disparate macroorganisms. Philos T Roy Soc B 345: 59–64.Google Scholar
  37. Troll H.J., 1931. Untersuchungen über Selbststerilität und Selbstfertilität bei Gräsern (Studies on self-sterility and self-fertility of grasses). Z Pflanzenzücht 16: 105–136.Google Scholar
  38. Welsh J. & M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nuc Acids Res 18: 7213–7218.Google Scholar
  39. Williams J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nuc Acids Res 18: 6531–6535.Google Scholar
  40. Wolfe M.S. & J.M. McDermott, 1994. Population genetics of plant pathogen interactions: the example of the Erysiphe graminis-Hordeum vulgare pathosystem. Annu Rev Phytopathol 32: 89–113.Google Scholar
  41. Xu W.W. & D.A. Sleper, 1991. A survey of restriction fragment length polymoprhisms in tall fescue and its relatives. Genome 34: 686–692.Google Scholar
  42. Xu W.W., D.A. Sleper & G.F. Krause, 1994. Genetic diversity of tall fescue germplasm based on RFLPs. Crop Sci 34: 246–252.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • R. Kölliker
    • 1
  • F.J. Stadelmann
    • 1
  • B. Reidy
    • 1
  • J. Nösberger
    • 1
  1. 1.Institute of Plant Sciences, Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations