Advertisement

Hydrobiologia

, Volume 392, Issue 1, pp 73–80 | Cite as

Impact of arsenic and antimony contamination on benthic invertebrates in a minor Corsican river

  • Christophe Mori
  • Antoine Orsini
  • Christophe Migon
Article

Abstract

The chemical and biological characteristics of a Corsican river that drains contaminated waters and sediment from an abandoned realgar mine were studied. The concentrations of pollutants such as As and Sb were found to be notably high. For example, in the Presa River, downstream the realgar mine, the mean As concentrations in the water and in the sediment were 3010 μg 1-1 and 9450 μg g-1 respectively. Species richness and abundance of benthic invertebrates decreased downstream the As mine. The disappearance of oligochaetes, leeches and a rarity of mayfly populations have been evidenced. On the contrary, a large increase in species belonging to stoneflies and gastropods was found. Some species like Baetis cyrneus, Ephemerella ignita, Sericostoma clypeatum and Ibisia marginata were more sensitive to As and Sb concentrations while others species like Ancylus fluviatilis, Isoperla insularis, Hydropsyche cyrnotica, Caenis luctuosa and Silonella aurata were less sensitive. The benthic invertebrates show different reactions in this contaminated environment, which could be explained by their feeding behaviours and certain morphological characteristics.

As Sb macroinvertebrates stream 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, P., 1980. The effects of mine drainage and organic enrichment on benthos in the river Nent system, Northern Pennines. Hydrobiologia 74: 119-128.Google Scholar
  2. Clements, W. H., 1994. Benthic invertebrate community responses to heavy metals in the Upper Arkansas River basin, Colorado. J. N. am. Benthol. Soc. 13: 30-44.Google Scholar
  3. Cummins, K. W. & J. M. Klug, 1979. Feeding ecology of stream invertebrates. Ann. Rev. Ecol. Syst. 10: 147-172.Google Scholar
  4. DDASS, Direction Départementale de l'Action Sanitaire et Sociale, 1995. Code de la Santé publique, Livre premier AI-3: 35-36.Google Scholar
  5. Elbaz-Poulichet F., D. M. Guan, P. Seyler & J. M. Martin, 1989. Dissolved trace metals and metalloids in the Rhône River / Estuarine system. Wat. Pollut. Res. Reports C.E.E.: 395-422.Google Scholar
  6. Elinder, C. G., 1984. Metabolism and toxicity of metals. In J. O. Nriagu (ed.), Changing Metal Cycles and Human Health, Life Sci Res. Report 28: 265-274.Google Scholar
  7. Eyres, J. P. & M. Pugh-Thomas, 1978. Heavy metal pollution of the river Irwell (Lancashire, UK) demonstrated by analysis of substrate materials and macroinvertebrate tissue. Envir. Pollut. 16: 129-136.Google Scholar
  8. Ferguson, J. F. & J. Gavis, 1972. A review of the Arsenical cycle in natural waters. Wat. Res. 6: 12-59.Google Scholar
  9. Förstner, U. & G. T. W. Whittmann, 1983. Metal Pollution in the Aquatic Environment. Springer Verlag, Berlin/Heidelberg/New York/Tokyo: 486 pp.Google Scholar
  10. Giudicelli, J., 1968. Recherche sur le peuplement, l'écologie et la biogéographie d'un réseau hydrographique de la Corse centrale. Thesis Univ. Aix-Marseille: 437 pp.Google Scholar
  11. Gibert, J., P. Marmonier, V. Vanek & S. Plénet, 1995. Hydrological exchange and sediment characteristics in a riverbank: relationship between heavy metals and invertebrate community structure. Can. J. Fish. aquat. Sci. 52: 2084-2097.Google Scholar
  12. Hill, B. H., J. M. Lazorchak, F. H. McCormick & W. T. Willigham, 1997. The effects of elevated metals on benthic community metabolism in a rocky mountain stream. Envir. Pollut. 95: 183-190.Google Scholar
  13. Irgrolic, K. J., R. A. Woolson, R. A. Stockton, R. D. Newman, N. R. Bottino, R. A. Zingaro, P. C. Kearney, R. A. Pyles, S. Maeda, W. J. McShane & E. R. Cox, 1977. Characterization of arsenic compounds formed by Daphnia magna and Tetraselmis chuii from inorganic arsenate. Envir. Health Perspect. 19: 61-78.Google Scholar
  14. Kiffney, P. M. & W. H. Clements, 1996. Effects of metals on stream macroinvertebrate assemblages from different altitudes. Ecol. Applic. 6: 472-481.Google Scholar
  15. Mathis, B. J.&T. F. Cummings, 1973. Selected metals in sediments, water, and biota in the Illinois River. J. Wat. Poll. Contr. Fed. 45: 1573-1583.Google Scholar
  16. Migon, C., C. Mori, A. Orsini & R. Tian, 1995. Arsenic and antimony contamination in a riverine environment affected by an abandoned realgar mine. Toxicol Envir. Chem. 52: 221-230.Google Scholar
  17. Mok, W. M. & C. M. Wai, 1990. Distribution and mobilisation of arsenic and antimony species in the Coeur d'Alene river, Idaho. Envir. Sci. Technol. 24: 102-108.Google Scholar
  18. Moore, J. W. & S. Rammorthy, 1984. Heavy Metals in Natural Waters. Springer-Verlag, Berlin.Google Scholar
  19. Moore, J. W., 1979. Diversity and indicator species as measures of water pollution in a subarctic lake. Hydrobiologia 66: 73-80.Google Scholar
  20. Moore, J. W., V. A. Beaubien & D. J. Sutherland, 1979a. Comparative effects of sediment and water contamination on benthic invertebrates in four lakes. Bull. envir. Contam. Toxicol. 23: 840-847.Google Scholar
  21. Moore, J. W., V. A. Beaubien & D. J. Sutherland, 1979b. Algal and invertebrate communities in three subarctic lakes receiving mine wastes. Wat. Res. 13: 1193-1202.Google Scholar
  22. Mori, C., 1997. Caractéristiques mésologiques et faunistiques des cours d'eau de Corse. Influence de l'hydrodynamisme et du substrat. Thesis Univ. Corté: 269 pp.Google Scholar
  23. Orsini, A., 1986. Influence du couvert végétal du bassin versant sur les caractéristiques thermiques, chimiques et biologiques des cours d'eau de Corse. Thesis Univ. Aix-Marseille: 230 pp.Google Scholar
  24. Phillips, D. J. H., 1990. Arsenic in aquatic organisms a review, emphasize, chemical speciation. Aquat. Toxicol. 16: 151-186.Google Scholar
  25. Sanders, J. G., 1979. Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae). J. Phycol. 15: 424-428.Google Scholar
  26. Sanders, H. O. & O. B. Cope, 1968. Toxicities of several pesticides to naiads of three species of stoneflies. Limnol. Oceanogr. 13: 112-122.Google Scholar
  27. Schuth, C. K., A. R. Isensee, E. A. Woolson & P. C. Kearney, 1974. Distribution of 14C and Arsenic derived from 14C cacodylic acid in an aquatic ecosystem. J. Agr. Food Chem. 22: 999-1003.Google Scholar
  28. Shannon, R. L. & D. L. Strayer, 1989. Arsenic-induced skin toxicity. Human Toxicol. 8: 99-104.Google Scholar
  29. Spehar, R. L., J. T. Fiandt, R. L. Anderson & D. L. DeFoe, 1980. Comparative toxicity of arsenic compounds and their accumulation in invertebrates and fish. Arch. envir. Contam. Toxicol. 9: 53-63.Google Scholar
  30. Wagemann, R., N. B. Snow, D. M. Rosenberg & A. Lutz, 1978. Arsenic in sediments, water and aquatic biota from lakes in the vicinity of Yellowknife, Northwest Territories, Canada. Arch. envir. Contam. Toxicol. 7: 169-191.Google Scholar
  31. Williams, K. A., D. W. J. Green & D. Pascoe, 1987. Studies on the acute toxicity of polluants to freshwater macroinvertebrates. 1. Cadmium. Arch. Hydrobiol. 102: 461-471.Google Scholar
  32. Winner, R. W., M. W. Boesel & M. P. Farrell, 1980. Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Can. J. Fish. Aquat. Sci. 37: 647-655.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Christophe Mori
    • 1
  • Antoine Orsini
    • 1
  • Christophe Migon
    • 2
  1. 1.Laboratoire CEVARENUniversité de CorseCorteFrance
  2. 2.Laboratoire de Physique et de Chimie MarinesUniversité Paris 6, INSU CNRS, La DarseVillefranche-sur-merFrance Tel

Personalised recommendations