Advertisement

Euphytica

, 106:139 | Cite as

Karyotype analysis of the genus Clivia by Giemsa and fluorochrome banding and in situ hybridization

  • Y. Ran
  • B.G. Murray
  • K.R.W. Hammett
Article

Abstract

The karyotypes of species in the genus Clivia were analyzed by using Giemsa C-banding, fluorochrome staining, silver impregnation and in situ hybridization. Banded ideograms were established with computer aided image analysis. A chromosome number of 2n = 22 and a similar basic karyotype, based on relative chromosome length and arm ratio, was found in all the four species. There were clear differences in banding pattern between the species which allowed their karyotypes, and consequently the species, to be unambiguously identified. Apart from at the centromere, heterochromatin was mainly distributed on the short arms of the smaller chromosomes. Amounts of heterochromatin in C. miniata and C. gardenii were greater than in the other two species. The number of pairs of rDNA sites, identified by in situ hybridization, ranged from one to three.

Clivia fluorochrome banding Giemsa banding in situ hybridization karyotype analysis silver nitrate staining 

References

  1. Bryan, J.E., 1995. Lively Clivias. Am Horticul 74: 27–29.Google Scholar
  2. Comings, D. & M.E. Drets, 1976. Mechanisms of chromosome banding. IX. Are variations in DNA base composition adequate to account for quinacrine, Hoechst 33258 and daunomycin banding? Chromosoma 56: 199–211.PubMedCrossRefGoogle Scholar
  3. Deumling, B. & J. Greilhuber, 1982. Characterization of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding. Chromosoma 84: 535–555.CrossRefGoogle Scholar
  4. Ebert, I., J. Greilhuber & F. Speta, 1996. Chromosome banding and genome size differentiation in Prospero (Hyacinthaceae): diploids. Plant Syst Evol 203: 143–177.CrossRefGoogle Scholar
  5. Fominaya, A., S. Molnar, N.S. Kim, Q. Chen, G. Fedak & K.C. Armstrong, 1997. Characterization of Thinopyrum distichum chromosomes using double fluoresence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome 40: 689–696.PubMedGoogle Scholar
  6. Gouws, J.B., 1949. Karyology of some South African Amaryllidaceae. Plant Life 5: 54–60.Google Scholar
  7. He, Q. & Y. Deng, 1989. Karyotype analysis of C. nobilis. J Beijing Agric Coll 4: 110–111.Google Scholar
  8. Inariyama, S., 1937. Karyotype studies in Amaryllidaceae. I. Sci Rep Tokyo Bunrika Diagaku, Sect B 3: 95–113.Google Scholar
  9. Jacobs, M.J., B.G. Murray & R.C. Gardner, 1998. Simple and robust karyotyping of Pinus radiata. Plant Syst Evol submitted.Google Scholar
  10. King, G.A. & K.M. Davies, 1992. Identification, cDNA cloning, and analysis of mRNAs having altered expression in tips of harvested asparagus spears. Plant Physiol 100: 1661–1669.PubMedCrossRefGoogle Scholar
  11. Kodoma, Y., M.C. Yoshida & M. Sasaki, 1980. An improved silver staining technique for nucleolus organizer region by using nylon cloth. Jpn J Hum Genet 25: 229–233.CrossRefGoogle Scholar
  12. Leitch, A.R., T. Schwarzacher, D. Jackson & I.J. Leitch, 1994. In Situ Hybridization. Microscopy Handbooks 27. BIOS Scientific Publishers Ltd, Oxford, UK.Google Scholar
  13. Leeman, U. & F. Ruch, 1978. Selective excitation of mithramycin or DAPI fluorescence on double stained nuclei and chromosomes. Histochemistry 58: 329–334.CrossRefGoogle Scholar
  14. Levan, A., K. Fredga & A.A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  15. Lin, M.S. & D.E. Comings, 1977. Optical studies of the interaction of 4'-6-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma 60: 15–25.PubMedCrossRefGoogle Scholar
  16. Moscone, E.A., M. Lambrou & F. Ehrendorfer, 1996. Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202: 37–63.CrossRefGoogle Scholar
  17. Mukai, Y., T.R. Endo & B.S. Gill, 1991. Physical mapping of 18S.26S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100: 71–78.CrossRefGoogle Scholar
  18. Murray, B.G., M.D. Bennett & K.R.W. Hammett, 1992. Secondary constrictions and NORs of Lathyrus investigated by silver staining and in situ hybridization. Heredity 68: 473–478.Google Scholar
  19. Murray, B.G. & B.J. Davies, 1996. An improved method for preparing the chromosomes of pines and other gymnosperms. Biotech Histochem 71: 115–117.PubMedGoogle Scholar
  20. Nakamura, Y., 1995. New Clivias. Engei Newslett 2, (11), Albiflora Ichikawa, Japan.Google Scholar
  21. Pedersen, C. & P. Langridge, 1997. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40: 589–593.PubMedGoogle Scholar
  22. Sato, D., 1938. Karyotype alteration and phylogeny. IV. Karyotypes in Amaryllidaceae with special reference to the SAT-chromosome. Cytologia 9: 203–242.Google Scholar
  23. Schwarzacher, T., P. Ambros & D. Schweizer, 1980. Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134: 203–207.CrossRefGoogle Scholar
  24. Schwarzacher, T. & D. Schweizer, 1982. Karyotype analysis and heterochromatin differentiation with Giemsa C-banding and fluorescent counterstaining in Cephalanthera (Orchidaceae). Plant Syst Evol 141: 91–113.CrossRefGoogle Scholar
  25. Schweizer, D., 1976a. DAPI fluorescence of plant chromosomes prestained with actinomycin D. Exp Cell Res 102: 409–413.CrossRefGoogle Scholar
  26. Schweizer, D., 1976b. Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324.PubMedCrossRefGoogle Scholar
  27. Schweizer, D., 1981. Counterstain-enhanced chromosome banding. Hum Genet 57: 1–14.PubMedGoogle Scholar
  28. Sumner, A.T., H.J. Evans & R.A. Buckland, 1973. Mechanisms involved in the banding of chromosomes with quinacrine and Giemsa. I. The effects of fixation in methanol-acetic acid. Exp Cell Res 81: 214–222.PubMedCrossRefGoogle Scholar
  29. Sumner, A.T., 1990. Chromosome Banding. Unwin Hyman, Boston.Google Scholar
  30. Vorster, P., 1994. Clivia nobilis. Flowering Plants of Africa 53: 70–74.Google Scholar
  31. Vosa, C.G., 1970. Heterochromatin recognition with fluorochromes. Chromosoma 30: 366–372.CrossRefGoogle Scholar
  32. Weathers, J., 1911. The Bulb Book. John Murray, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Y. Ran
    • 1
  • B.G. Murray
    • 1
  • K.R.W. Hammett
    • 2
  1. 1.School of Biological Sciences, The University of AucklandAucklandNew Zealand
  2. 2.Auckland 8New Zealand

Personalised recommendations