Hydrobiologia

, Volume 391, Issue 1–3, pp 99–111 | Cite as

Downstream changes in phytoplankton composition and biomass in a lowland river–lake system (Warnow River, Germany)

  • Mandy Bahnwart
  • Thomas Hübener
  • Hendrik Schubert
Article

Abstract

To determine longitudinal changes in phytoplankton composition and biomass in the Warnow River (Germany), single water parcels were followed during their downstream transport in August and October 1996 and April 1997. In summer, the phytoplankton assemblage was dominated by centric diatom and cyanobacteria species. Stephanodiscus hantzschii, Pseudanabaena limnetica, Planktothrix agardhii and Aulacoseira granulata var. angustissima were the most frequent species. In autumn, small centric diatoms dominated the whole river course. Irrespective of the season, in the fluvial lakes of the upper river, a substantial increase of phytoplankton biomass was observed. Shallow upstream river stretches were associated with large biomass losses. In the deep, slow flowing lower regions, total biomass remained constant. Longitudinal changes in biomass reflected downstream variations in flow velocity and river morphology. Cyanobacteria, cryptophytes and diatom species were subjected to large biomass losses along fast flowing, shallow river sections, whereas chlorophytes were favoured. Diatoms and cryptophytes benefited from low flow velocity and increased water depth in the downstream river. Changes in water depth and flow velocity have been found as key factors that cause the longitudinal differences in phytoplankton composition and biomass in small rivers.

phytoplankton river flow regime downstream changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Admiraal, W., S. D. Mylius, E. D. De Ruyter van Steveninck & D.M. J. Tubbing, 1993. A model of phytoplankton production in the lower River Rhine verified by observed changes in silicate concentration. J. Plankton Res. 15: 659-682.Google Scholar
  2. Admiraal, W., L. Breebaart, G. M. J. Tubbing, B. Van Zanten, E. D. De Ruyter van Steveninck & R. Bijkerk, 1994. Seasonal variation in composition and production of planktonic communities in the lower River Rhine. Freshwat. Biol. 32: 519-531.Google Scholar
  3. Basu, B. K. & F. R. Pick, 1997. Phytoplankton and zooplankton development in a lowland, temperate river. J. Plankton Res. 19: 237-253.Google Scholar
  4. Capblancq, J. & H. Décamps, 1978. Dynamics of the phytoplankton in the River Lot. Verh. int. Ver. Limnol. 20: 1479-1484.Google Scholar
  5. Chandler, D. C., 1937. Fate of typical lake plankton in streams. Ecol. Monogr. 7: 445-479.Google Scholar
  6. De Ruyter van Steveninck, E. D., W. Admiraal & B. Van Zanten, 1990. Changes in plankton communities in regulated reaches of the lower River Rhine. Regul. Riv. 5: 67-75.Google Scholar
  7. De Ruyter van Steveninck, E. D., W. Admiraal, L. Breebaart, G. M. J. Tubbing & B. Van Zanten, 1992. Plankton in the River Rhine: structural and functional changes observed during downstream transport. J. Plankton Res. 14: 1351-1368.Google Scholar
  8. Descy, J.-P., 1987. Phytoplankton composition and dynamics in the River Meuse (Belgium). Arch. Hydrobiol. Suppl. 78: 225-245.Google Scholar
  9. Garnier, J., G. Billen & M. Coste, 1995. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observations and modeling. Limnol. Oceanogr. 40: 750-765.Google Scholar
  10. Gosselain, V., J.-P. Descy & E. Everbecq, 1994. The phytoplankton community of the River Meuse, Belgium: Seasonal dynamics (year 1992) and the possible incidence of zooplankton grazing. Hydrobiologia 289: 179-191.Google Scholar
  11. Hötzel G. & R. Croome, 1994. Long-term phytoplankton monitoring of the Darling River at Burtundy, New South Wales: incidence and significance of cyanobacterial blooms. Aust. J. Mar. Freshwat. Res. 45: 747-759.Google Scholar
  12. Hudon, C., S. Paquet & V. Jarry, 1996. Downstream variations of phytoplankton in the St. Lawrence River (Quebec, Canada). Hydrobiologia 337: 11-26.Google Scholar
  13. Hübener, T., V. Kell, D. Kolbow, B. Strehlow & U. Lenschow, 1989. Phytoplankton dynamics of the Warnow River 1984-1986. Acta Hydrochim. Hydrobiol. 17: 619-631.Google Scholar
  14. Hustedt, F., 1930. Die Kieselalgen. In L. Rabenhorst (ed.), Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Reprint 1991, Koeltz, Champaign, 1: 920 pp.Google Scholar
  15. Kiss, K. T., 1996. Diurnal changes of planktonic diatoms in the River Danube near Budapest (Hungary). Arch. Hydrobiol. Suppl. 112: 113-122.Google Scholar
  16. Köhler, J., 1993. Growth, production and losses of phytoplankton in the lowland River Spree. 1. Population dynamics. J. Plankton Res. 15: 335-349.Google Scholar
  17. Köhler, J., 1994. Origin and succession of phytoplankton in a riverlake system (Spree, Germany). Hydrobiologia 289: 73-83.Google Scholar
  18. Köhler, J., 1997. Measurement of in situ growth rates of phytoplankton under conditions of simulated turbulence. J. Plankton Res. 19: 849-862.Google Scholar
  19. Koseff, J. R., J. K. Holen, S. G. Monismith & J. E. Cloern, 1993. Coupled effects of vertical mixing and benthic grazing on phytoplankton populations in shallow, turbid estuaries. J. mar. Res. 51: 843-868.Google Scholar
  20. Kromkamp, J., J. Peene, P. Van Rijswijk, A. Sandee & N. Goosen, 1995. Nutrients, light and primary production by phytoplankton and microphytobenthos in the eutrophic, turbid Westerschelde Estuary (The Netherlands). Hydrobiologia 311: 9-19.Google Scholar
  21. Lack, T. J., 1971. Quantitative studies on the phytoplankton of the Rivers Thames and Kennet at Reading. Freshwat. Biol. 1: 213-224.Google Scholar
  22. LAWA & BMV (Länderarbeitsgemeinschaft Wasser und Bundesminister für Verkehr), 1988. Pegelvorschrift, Anlage D. Verlag Paul Parey, Hamburg-Berlin.Google Scholar
  23. Moss, B. & H. Balls, 1989. Phytoplankton distribution in a floodplain lake and river system. 2. Seasonal changes in the phytoplankton communities and their control by hydrology and nutrient availability. J. Plankton Res. 11: 839-867.Google Scholar
  24. Nicklisch, A., 1994. Does mortality by nitrogen deficiency influence the succession of Limnothrix redekei and Planktothrix agardhii? Verh. int. Ver. Limnol. 25: 2214-2217.Google Scholar
  25. Porra, R. J., W. A. Thompson & P. E. Kriedemann, 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975: 384-394.Google Scholar
  26. Reynolds, C. S., 1988. Potamoplankton: paradigms, paradoxes and prognoses. In F. E. Round (ed.), Algae and the Aquatic Environment. Biopress, Bristol: 285-311.Google Scholar
  27. Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9-21.Google Scholar
  28. Reynolds, C. S., M. L. White, R. T. Clarke & A. F. Marker, 1990. Suspension and settlement of particles in flowing water: Comparison of the effects of varying water depth and velocity in circulating channels. Freshwat. Biol. 24: 23-34.Google Scholar
  29. Reynolds, C. S., J.-P. Descy & J. Padisák, 1994. Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289: 1-7.Google Scholar
  30. Reynolds, C. S. & J.-P. Descy, 1996. The production, biomass and structure of phytoplankton in large rivers. Arch. Hydrobiol. Suppl. 113: 161-187.Google Scholar
  31. Round, F. E., 1981. The Ecology of Algae. Cambridge University Press, Cambridge, 653 pp.Google Scholar
  32. Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342/343: 107-115.Google Scholar
  33. Schumann, R., C. Sievert & U. Schiewer, 1992. Structural compositions of pelagic communities in the River Warnow and their changes. Int. Rev. ges. Hydrobiol. 77: 173-185.Google Scholar
  34. Talling, J. F. & J. Rzó ska, 1967. The development of plankton in relation to hydrological regime in the Blue Nile. J. Ecol. 55: 637-662.Google Scholar
  35. Thiele, V. & D. Mehl, 1995. Ökologisch begründetes Sanierungskonzept für das Gewässereinzugsgebiet der Warnow (Mecklenburg-Vorpommern). In Landesamt für Umwelt und Natur Mecklenburg-Vorpommern (ed.), Schriftenreihe des Landesamtes für Umwelt und Natur Mecklenburg-Vorpommern, LAUN, Gülzow, 2: 158 pp.Google Scholar
  36. Uherkovich, G., 1966. Das Leben der Tisza. XXVII. Zur Frage der Potamolimnologie und des Potamoplanktons. Acta. biol. Szeged. 12: 55-66.Google Scholar
  37. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1-38.Google Scholar
  38. Yang, J. R., B. K. Basu, P. B. Hamilton & F. R. Pick, 1997. the development of a true riverine phytoplankton assemblage along a lake-fed lowland river. Arch. Hydrobiol. 140: 243-260.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Mandy Bahnwart
    • 1
  • Thomas Hübener
    • 1
  • Hendrik Schubert
    • 1
  1. 1.Department of Biology, Institute of BotanyUniversity of RostockRostockGermany (

Personalised recommendations