Advertisement

Journal of Applied Electrochemistry

, Volume 29, Issue 8, pp 919–926 | Cite as

Cyclone flow cell for the investigation of gas-diffusion electrodes

  • K. Sundmacher
Article

Abstract

Electrochemical gas–liquid reactions can be efficiently carried out at porous gas diffusion electrodes (GDE). These electrodes are simultaneously in contact with a gas phase and a liquid phase. For the design and scale-up of electrochemical reactors based on these GDE their macrokinetic behaviour (i.e., the interaction of reaction and internal mass transport phenomena) must be investigated under well defined external mass transfer conditions and controlled wetting conditions. To meet these requirements, a novel cyclone cell has been designed in which two vortex flow fields are realised on either side of a horizontally positioned GDE. The external mass transfer coefficients in this cell are determined from limiting current measurements for the oxidation of Fe(CN6)4−.

cell design gas-diffusion electrodes gas–liquid reactions limiting current technique mass transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sundmacher, Reaktionstechnische Grundlagen der elektrochemischen Absorption mit Gasdi€usionselektroden, VDI-Fortschrittbericht, Reihe 3, No. 564, VDI-Verlag, Düsseldorf. (1998).Google Scholar
  2. 2.
    K. Sundmacher and U. Hoffmann, Chem. Eng. Sci. 54 (1999) to appear.Google Scholar
  3. 3.
    A.J. Bard and L.R. Faulkner, Electrochemical Methods-Fundamentals and Applications, J. Wiley & Sons, New York (1980) pp. 283–98.Google Scholar
  4. 4.
    H. Schlichting, Boundary-Layer Theory, 7th edn, McGraw-Hill, New York (1987).Google Scholar
  5. 5.
    U.T. Bödewadt, ZAMM 20 (1940) pp. 241–53.Google Scholar
  6. 6.
    J.E. Nydahl, Heat Transfer for the BOÈDEWADT Problem, Dissertation, Colorado State University, Fort Collins, CO. (1971).Google Scholar
  7. 7.
    K. Leschonski, Mehrphasenströmungen II, Lecture manuscript, TU Clausthal, (1986) sections 4. 1–4.23.Google Scholar
  8. 8.
    W. Barth, Brennstoff-Warme-Kraft 8 (1956) 1–9.Google Scholar
  9. 9.
    W. Krambrock, Aufbereitungstechnik 12 (1971) 391–401 and 643–49.Google Scholar
  10. 10.
    Gamry Instruments, Inc., CMS 100 Framework Software, Operator's Manual, CMS 105 DC Corrosion Test System, USA (1994) pp. 1–9.Google Scholar
  11. 11.
    J.S. Newman, Electrochemical Systems, 2nd edn, Prentice-Hall, NJ, (1991), a. 267–69, b. 253–56, c. 255, d. 97–101.Google Scholar
  12. 12.
    R. Krishna and J.A. Wesselingh, Chem. Eng. Sci. 52 (1997) 861–911.Google Scholar
  13. 13.
    B. Levich, Acta Physicochimica URSS 17 (1942) 257–307.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • K. Sundmacher
    • 1
  1. 1.Institut für Chemische VerfahrenstechnikTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations