, Volume 390, Issue 1–3, pp 51–60 | Cite as

Oxygen dependent habitat selection in surface and hyporheic environments by Gammarus roeseli Gervais (Crustacea, Amphipoda): experimental evidence

  • K. S. Henry
  • D. L. Danielopol


Field distributions of benthic and hyporheic invertebrates are dynamic and are influenced by many physical and chemical factors. A laboratory flume containing natural gravel substrates was used to test the hypothesis that the amphipod Gammarus roeseli Gervais actively selects habitat based on two important environmental variables, dissolved oxygen concentration and direction of water flow. Under homogeneous oxygen concentrations throughout the flume, amphipods accumulated downstream. During trials with uniformly hypoxic conditions throughout the flume, G. roeseli moved to stones and screens at the water surface and above, into the zone normally saturated with humidity. This behavior, termed aquatic surface respiration, may enhance survival during periods of oxygen deficiency. Oxygen gradients were created in the flume by injecting water of differing oxygen concentrations into the head and the center of the channel. A statistically significant response to these gradients by G. roeseli demonstrates active selection of regions with more favorable oxygen concentrations.

Gammarus roeseli invertebrate hypoxia habitat selection hyporheic zone aquatic surface respiration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhattacharyya, G. A. & R. A. Johnson, 1977. Statistical Concepts and Methods. J. Wiley and Sons, New York, 476 pp.Google Scholar
  2. Boulton, A., 1991. Invertebrate recolonization of small patches of defaunated hyporheic sediments in a Sonoran Desert stream. Freshwat. Biol. 26: 267–277.CrossRefGoogle Scholar
  3. Carman, K. R. & M. A. Todaro, 1996. Influence of polycyclic aromatic hydrocarbons on the meiobenthic copepod community of a Louisiana salt marsh. J. exp. mar. Biol. Ecol. 198: 37–54.CrossRefGoogle Scholar
  4. Cartar, R. V. & M. V. Abrahams, 1997. Predicting the distribution of organisms among few patches: problems with detecting departures from the ideal free distribution. Oikos 78: 388–393.Google Scholar
  5. Clinton, S. M., N. B. Grimm & S. G. Fisher, 1996. Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream. J. n. am. benthol. Soc. 15: 700–712.CrossRefGoogle Scholar
  6. Cook, R. & C. Boyd, 1965. The avoidance by Gammarus oceanicus Segerstrale (Amphipoda, Crustacea) of anoxic regions. Can. J. Zool. 43: 971–975.PubMedCrossRefGoogle Scholar
  7. Costa, H., 1967. Responses of Gammarus pulex (L.) to modified environment. III. Reactions to low oxygen tensions. Crustaceana 13: 175–189.CrossRefGoogle Scholar
  8. Danielopol, D. L., 1975. Der Einfluss von Verschmutung auf die Biozoenosen des Interstitials von Fliessgewaessern. Wissenschaftliche Kurzreferate, 18. Jahres-Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung, Regensburg 1: 143–151.Google Scholar
  9. Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speleo. 8: 23–51.Google Scholar
  10. Danielopol, D. L., 1989. Ground water fauna associated with riverine aquifers. J. n. am. benthol. Soc. 8: 18–35.CrossRefGoogle Scholar
  11. DeFur, P. L., C. P. Magnum & J. E. Reese, 1990. Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biol. Bull. 178: 46–54.Google Scholar
  12. Dole-Olivier, M-J. & P. Marmonier, 1992a. Effects of spate on the vertical distribution of the interstitial community. Hydrobiologia 230: 49–61.CrossRefGoogle Scholar
  13. Dole-Olivier, M-J. & P. Marmonier, 1992b. Patch distribution of interstitial communities: prevailing factors. Freshwat. Biol. 27: 177–191.CrossRefGoogle Scholar
  14. Dole-Olivier, M-J., P. Marmonier & J. L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwat. Biol. 37: 257–276.CrossRefGoogle Scholar
  15. Edler, C. & W. K. Dodds, 1996. The ecology of a subterranean isopod Caecidotea tridentata. Freshwat. Biol. 35: 249–260.CrossRefGoogle Scholar
  16. Foeckler, F. & E. Schrimpff, 1985. Gammarids in streams of Northeastern Bavaria, F.R.G. II. The different hydrochemical habitats of Gammarus fossarum Koch, 1835 and Gammarus roeseli Gervais, 1835. Arch. Hydrobiol. 104: 269–286.Google Scholar
  17. Gamble, J., 1971. The responses of the marine amphipods Corophium arenatium and C. volutator to gradients and to choices of different oxygen concentrations. J. exp. Biol. 54: 275–290.Google Scholar
  18. Gaufin, A. R., 1973. Water quality requirement of aquatic insects. U.S. EPA 660/3–73–004, Corvallis, 76 pp.Google Scholar
  19. Hervant, F., J. Mathieu, G. Messana, 1997b. Locomotory, ventilatory and respiratory responses of the subterranean Stenasellus virei (Crustacea, Isopoda) to severe hypoxia and subsequent recovery. C. R. Acad. Sci., Paris, Sci. Vie 320: 139–148.Google Scholar
  20. Hervant, F., J. Mathieu, D. Garin & A. Freminet, 1995. Behavioural, ventilatory and metabolic responses to severe hypoxia and subsequent recovery of the hypogean Niphargus rhenorhodanensis and the epigean Gammarus fossarum (Crustacea: Amphipods). Physiol. Zool. 68: 223–244.Google Scholar
  21. Hervant, F., J. Mathieu, H. Barre, K. Simon & C. Pinon, 1997a. Comparative study on the behavioural, ventilatory and respiratory responses of hypogean and epigean crustaceans to long-term starvation and subsequent feeding. Comp. Biochem. Physiol. 118A: 1277–1283.CrossRefGoogle Scholar
  22. Hoback, W. W. & M. C. Barnhart, 1996. Lethal limits and sublethal effects of hypoxia on Gammarus pseudolimnaeus Bousfield (Amphipoda, Crustacea). J. N. Am. Benthol. Soc. 15: 117–125.CrossRefGoogle Scholar
  23. Kramer, D., 1982. Aquatic surface respiration in the fishes of Panama: distribution in relation to risk of hypoxia. Envir. Biol. Fishes 8: 49–54.CrossRefGoogle Scholar
  24. Lacoursiere, J. & D. Craig, 1990. A small flume for studying the influence of hydrodynamic factors on benthic invertebrate behaviour. J. N. Am. Benthol. Soc. 9: 358–367.CrossRefGoogle Scholar
  25. Marmonier, P. and M. Creuzé des Châtelliers, 1991. Effects of spates on interstitial assemblages of the Upper Rhône River. Hydrobiologia 210: 243–251.CrossRefGoogle Scholar
  26. Marmonier, P. & M-J. Dole, 1986. Interstitial amphipods of a by-passed section of the Rhone river: distribution patterns and reaction to spates. Sci. Eau 5: 461–486.Google Scholar
  27. Meijering, M. P. D., 1972. Experimentelle Untersuchungen zur Drift und Aufwanderung von Gammariden in Fließgewässern. Arch. Hydrobiol. 70: 133–205.Google Scholar
  28. Meijering, M. P. D., 1989. Immissionsbelastung des Waldes und seiner Böden-Gefahr für die Gewässer? Deutsch. Verband Wasserwirtsch. Kulturb. 17: 369–381.Google Scholar
  29. Meijering, M. P. D., 1991. Lack of oxygen and low pH as limiting factors for Gammarus in Hessian brooks and rivers. Hydrobiologia 223: 159–169.CrossRefGoogle Scholar
  30. Nebeker, A., 1972. Effect of low oxygen concentration on survival and emergence of aquatic insects. Trans. am. Fish. Soc. 4: 675–679.CrossRefGoogle Scholar
  31. Nebeker, A., S. Onjukka, D. Stevens, G. Chapman & S. Dominguez, 1992. Effects of low dissolved oxygen on survival, growth and reproduction of Daphnia, Hyalella and Gammarus. Envir. Tox. Chem. 11: 373–379.Google Scholar
  32. Newman, M. C., 1994. Quantitative Methods in Aquatic Ecotoxicology. CRC Press, Boca Raton, 426 pp.Google Scholar
  33. Negrea, S. & P. Pospisil, 1995. Contribution a la connaissance des Cladoceres des eaux souterraines du Danube a Vienne. Annls. Limnol. 31: 169–178.CrossRefGoogle Scholar
  34. Otto, C., 1998. Factors affecting the disjunct distribution of amphipods along a North Swedish river. Oikos 83: 21–28.Google Scholar
  35. Palmer, M. A., 1990. Understanding the movement dynamics of a steam-dwelling meiofauna community using marine analogs. Stygologia 5: 67–74.Google Scholar
  36. Palmer, M. A., 1992. Incorporating lotic meiofauna into our understanding of faunal transport processes. Limnol. Oceanogr. 37: 329–341.CrossRefGoogle Scholar
  37. Palmer, M. A., J. D. Allan & C. A. Butman, 1996. Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends Ecol. Evol. 11: 322–326.CrossRefGoogle Scholar
  38. Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.Google Scholar
  39. Pöckl, M., 1992. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. Freshwat. Biol. 27: 211–225.CrossRefGoogle Scholar
  40. Pöckl, M., 1993. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeseli in Austrian streams and rivers. Freshwat. Biol. 30: 73–91.CrossRefGoogle Scholar
  41. Pospisil, P., 1994. Die Grundwassercyclopiden (Crustacea, Copepoda) der Lobau in Wien (Österreich) faunistische, taxonomische und ökologische Untersuchungen. Ph.D. Thesis, Univ. of Vienna, 222 pp.Google Scholar
  42. Pospisil, P., D. L. Danielopol & J. E. Dreher, 1994. Measuring dissolved oxygen in simple and multi-level wells. In J. A. Stanford & H. M. Valett (eds), Proceedings of the Second International Conference on Ground Water Ecology. American Water Resources Association, Herndon: 57–64.Google Scholar
  43. Robertson, A., J. Lancaster & A. G. Hildrew, 1995. Stream hydraulics and the distribution of microcrustacea: A role for refugia? Freshwat. Biol. 33: 469–484.CrossRefGoogle Scholar
  44. Roux, C., 1982. Les variations du métabolisme respiratoire et de l'activité de quelques invertébrés dulçaquicoles sous l'influence de divers facteurs écologiques. Ph.D. Thesis, Univ. Claude-Bernard Lyon I, 159 pp.Google Scholar
  45. Roux, C. & A. L. Roux, 1980. Repartition ecologique et metabolisme respiratoire de Gammarus Roeseli Gervais 1835. Crustaceana, Suppl. 6: 148–159.Google Scholar
  46. Rutledge, C. & T. Beitinger, 1989. The effects of dissolved oxygen and aquatic surface respiration on the critical thermal maxima of three intermittent-stream fishes. Envir. Biol. Fishes 24: 137–143.CrossRefGoogle Scholar
  47. Schaefer, M. & W. Tischler, 1983. Oekologie. Gustav Fischer Varlag. Stuttgart, 314 pp.Google Scholar
  48. Sokal, R. R. & F. J. Rohlf, 1995. Biometry: The Principles and Practice in Biological Research. 3rd edition. W. H. Freeman and Co., New York, 789 pp.Google Scholar
  49. Starry, O., J. Wanzenboeck & D. L. Danielopol, 1998. Tendency of the amphipod Gammarus roeseli Gervais to colonize coarse sediment habitats under fish predation pressure. Int. Rev. ges. Hydrobiol. 83: 371–380.Google Scholar
  50. Strayer, D. L., 1994. Limits to biological distributions in groundwater. In J. Gibert, D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego: 287–310.Google Scholar
  51. Vobis, H., 1973. Rheotaktisches Verhalten einiger Gammarus-Arten bei verschiedenem Sauerstoffgehalt des Wassers. Helgoländer wiss. Meeresunters 25: 495–508.CrossRefGoogle Scholar
  52. Williams, D. D. & K. A. Moore, 1985. The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus: a laboratory analysis. Oikos 44: 280–286.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • K. S. Henry
    • 1
  • D. L. Danielopol
    • 1
  1. 1.Limnological Institute, Austrian Academy of SciencesMondseeAustria Tel
  2. 2.Department of Zoology, 218C National Food Safety and Toxicology CenterMichigan State UniversityEast LansingU.S.A.

Personalised recommendations