, Volume 386, Issue 1–3, pp 203–211 | Cite as

Impact of turbulence and turbidity on the grazing rate of the rotifer Brachionus calyciflorus (Pallas)

  • Anne Miquelis
  • Claude Rougier
  • Roger Pourriot


The impact of turbulence and turbidity on Brachionus calyciflorus grazing rate was determined in short feeding periods (10 min), using labelled Chlorella pyrenoïdosa. The response to water motion of B. calyciflorus depends on it physiological state: the grazing rate of recently fed amictic females stomach green (with one or two eggs) is significantly reduced in agitated environments compared with non-agitated environments. In contrast, the grazing rate of starved amictic females is not reduced by water motion, whatever its velocity (V1=0.18 m s−1 and V2=0.22 m s−1). In the presence of suspended particles (3–6-μm silica beads), a larger reduction in grazing rate is observed in agitated water at any water velocity (V1=0.18 m s−1 or V2=0.22 m s−1), than in stagnant water. A synergy between turbulence and turbidity is unfavourable to feeding of rotifers.

turbulence turbidity grazing rate Brachionus calyciflorus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amblard, C. & B. Pinel–Alloul, 1995. Variations saisonnières et interannuelles du plancton. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale, Masson Paris: 441–472.Google Scholar
  2. Armengol, J., G. Moreau & D. Planas, 1983. Evolution, à court terme, des communautés zooplanctoniques de deux rivières du nord Québécois soumises à une forte réduction de débit. Can. J. Zool. 61: 2011–2020.Google Scholar
  3. Arruda, J. A., G. R. Marzolf & R. T. Faulk, 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64: 1225–1235.CrossRefGoogle Scholar
  4. Bogdan, K. G. & J. J. Gilbert, 1984. Body size and food size in freshwatter zooplankton. Proc. natn. Acad. Sci. U.S.A. 81: 6427–6431.CrossRefGoogle Scholar
  5. Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwatter zooplankton. A multitracer cell approach. Oecologia 72: 331–340.CrossRefGoogle Scholar
  6. Davies, B. R. & K. F. Walker, 1986. The Ecology of River Systems. Dr W. Junk Publishers, Dordrecht: 793 pp.Google Scholar
  7. De Leo, G. A. & I. Ferrari, 1993. Disturbance and diversity in a river zooplankton community: a neutral model analysis. Coenoses 8: 121–129.Google Scholar
  8. De Mott, W. R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334–340.CrossRefGoogle Scholar
  9. Dumont, H. J., 1977. Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. Beih. 8: 98–122.Google Scholar
  10. Ferrari, I. & R. Mazzoni, 1989. Zooplankton in the Po river during the summer of 1985. Toxicol. envir. Chem. 20/21: 39–48.CrossRefGoogle Scholar
  11. Ferrari, I., A. Farabegoli & R. Mazzoni, 1989. Abundance and diversity of planktonic rotifers in the Po river. Hydrobiologia 186/187: 201–208.CrossRefGoogle Scholar
  12. Frontier, S & D. Pichod–Viale, 1991. Ecosystèmes: Structure–Fonctionnement–Evolution. Masson, Paris: 392 pp.Google Scholar
  13. Gilbert, J. J. & K. G. Bogdan, 1984. Rotifer grazing: in situ studies on selectivity and rates. In Meyers, D. G. & J. R. Strickler (eds), Trophic Interactions within Aquatic Ecosystems. AAAS, Washington, DC: 97–133.Google Scholar
  14. Gilbert, J. J. & P. L. Starkweather, 1978. Feeding in the rotifer Brachionus calyciflorus III. Direct observations of the effects of food type, food density, change in food type, and starvation on the incidence of pseudotrochal screening. Verh. int. Ver. Limnol. 20: 2382–2388.Google Scholar
  15. Gilvear, D. J.& J. P. Bravard, 1993. Dynamique fluviale. In Amoros, C. & G. E. Petts (ed.), Hydrosystèmes Fluviaux. Collection d'Ecologie 24, Masson, Paris: 61–82.Google Scholar
  16. Gliwicz, M. Z., 1986. Suspended clay concentation controlled by filter–feeding zooplankton in a tropical reservoir. Nature 323: 330–332.CrossRefGoogle Scholar
  17. Gosselain, V., J.–P. Descy & E. Everbecq, 1994. The phytoplankton community of the River Meuse, Belgium: seasonal dynamics (year 1992) and the possible incidence of zooplankton grazing. Hydrobiologia 289: 179–191.CrossRefGoogle Scholar
  18. Hart, R. C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwat. Biol. 19: 123–139.CrossRefGoogle Scholar
  19. Jack, J. D., S. A. Wickham, S. Toalson, & J. J. Gilbert, 1993. The effects of clays on freshwater plankton community: an enclosure experiment. Arch. Hydrobiol. 127: 257–270.Google Scholar
  20. Kirk, K. L., 1991. Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72: 915–923.CrossRefGoogle Scholar
  21. Kirk, K. L.& J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.CrossRefGoogle Scholar
  22. Marrasé, C., J. H. Costello, T. Granata, & J. Rudi Strickler, 1990. Grazing in a turbulent environment: energy dissipation, encounter rates, and efficacy of feeding currents in Centrophages hamatus. Proc. natn. Acad. Sci. U.S.A. 87: 1653–1657.CrossRefGoogle Scholar
  23. Miquelis, A., 1996. Facteurs de contrôle des populations zooplanctoniques en milieu fluvial (la Seine), relations fleuve–annexes hydrauliques. Thèse Doctorat, Univ. Aix–Marseille III: 295 pp.Google Scholar
  24. Mourelatos, S., 1988. Broutage du phytoplancton par le zooplancton dans un lac peu profond. Thèse Doctorat, Univ. Paris 6: 193 pp.Google Scholar
  25. Mourelatos, S., R. Pourriot, & C. Rougier, 1990. Taux de filtration du rotifère Brachionus calyciflorus: comparaison des méthodes de mesure; influence de l'âge. Vie Milieu 40: 39–43.Google Scholar
  26. Peters, R. H., 1984. Methods for the study of feeding, grazing and assimilation by zooplankton. In Downing, J. A. & F.H. Rigler (eds), A Manual on Methods for the Assesment of Secondary Productivity in Freshwaters, 2nd edn. IPB Handbook 17. Blackwell, Oxford: 336–412.Google Scholar
  27. Peters, F. & T. Gross, 1994. Increased grazing rates of microplankton in response to small–scale turbulence. Mar. Ecol. Prog. Ser. 115: 299–307.Google Scholar
  28. Pont, D., 1995. Le zooplancton herbivore dans les chaînes alimentaires pélagiques. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson, Paris: 515–540.Google Scholar
  29. Pourriot, R., 1965. Recherches sur l'écologie des rotifères. Vie Milieu Suppl. 21: 224 pp.Google Scholar
  30. Pourriot, R., 1977. Food and feeding habits of rotifera. Arch. Hydrobiol. Beih. 8: 243–260.Google Scholar
  31. Pourriot, R., D. Benest, P. Champ & C. Rougier, 1982. Influence de quelques facteurs du milieu sur la composition et la dynamique saisonnière du zooplancton de la Loire. Acta Oecol. Oecol. Gener. 3: 353–371.Google Scholar
  32. Pourriot, R., C. Rougier & A. Miquelis, 1997. Origin and development of river zooplankton: example of the Marne. Hydrobiologia 345: 143–148.CrossRefGoogle Scholar
  33. Rothhaupt, K. O., 1990a. Differences in particle size–dependent feeding efficiencies of closely related rotifer species. Limnol. Oceanogr. 35: 16–23.CrossRefGoogle Scholar
  34. Rothhaupt, K. O., 1990b. Changes of the functional reesponses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnol. Oceanogr. 35: 24–32.Google Scholar
  35. Rotschild, B. J. & T. R. Osborn, 1988. Small–scale turbulence and plankton contact rates. J. Plankt. Res. 10: 465–474.Google Scholar
  36. Saiz, E. & M. Alcaraz, 1992. Enhanced excretion rates induced by small–scale turbulence in Acartia (copepoda: calanoïda). J. Plankt. Res. 14: 681–689.Google Scholar
  37. Saiz, E., M. Alcaraz & G. A. Paffenhöfer, 1992. Effects of smallscale turbulence on feeding rate and gross–growth efficiency of three Acartia species (copepoda: calanoïda). J. Plankt. Res. 14: 1085–1097.Google Scholar
  38. Starkwzather, P. L., 1980. Aspects of the feeding behavior and trophic ecology of suspension–feeding rotifers. Hydrobiologia 73: 63–72.CrossRefGoogle Scholar
  39. Starkweather, P. L. & J. J. Gilbert, 1977. Radiotracer determination of feeding in Brachionus calyciflorus: the influence of gut passage times. Arch. Hydrobiol. Beih. 8: 261–263.Google Scholar
  40. Vanderploeg, H. A., 1994. Zooplankton particle selection and feeding mechanisms. In The Whitton, B. A. (ed.), Biology of Particles in Aquatic Systems, 2nd edn. Blackwell, Oxford: 206–234.Google Scholar
  41. Winner, J. M., 1975. Zooplankton. In Whitton, B. A. (ed.), River Ecology. Blackwell, Oxford: 155–169.Google Scholar
  42. Yamasaki, H., T. R. Osborn, & K. D. Squires, 1991. Direct numerical simulation of planktonic contact in turbulent flow. J. Plankt. Res. 13: 629.Google Scholar
  43. Van Dijk G. M. & B. Van Zanten, 1995. Seasonal changes in zooplankton abundance in the lower Rhine during 1987–1991. Hydrobiologia. 304: 29–38.Google Scholar
  44. Van Zanten, B. & G. M. Van Dijk, 1994. Seasonal development of zooplankton in the lower Rhine during the period 1987–1991. Wat. Sci. Tech. 29: 49–51.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Anne Miquelis
    • 1
  • Claude Rougier
    • 2
  • Roger Pourriot
    • 3
  1. 1.UPRES 2202, case 31Université de ProvenceMarseilleFrance; Tel
  2. 2.Laboratoire d'Hydrobiologie Marine et ContinentaleUniversité Montpellier 2, Place EugèneMontpellierFrance
  3. 3.URA 1367, Laboratoire de Géologie Appliquée, LimnologieUniversitéParisFrance

Personalised recommendations