Advertisement

Hydrobiologia

, Volume 385, Issue 1–3, pp 171–181 | Cite as

Thiol pools and glutathione redox ratios as possible indicators of copper toxicity in the green macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (Greece, N Aegean Sea)

  • J.W. Rijstenbil
  • S. Haritonidis
  • P. Malea
  • M. Seferlis
  • J.A. Wijnholds
Article

Abstract

Defence mechanisms against Cu toxicity were examined in two dominant Enteromorpha species from two coastal water types. The macroalgae were collected at three locations in the eulittoral of the Scheldt Estuary (Netherlands, Belgium) and the Thermaikos Gulf (Greece). For 10 days E. prolifera (Scheldt) and E. linza (Thermaikos) were incubated in seawater media of different salinities: 6, 9, 23 psu and 25, 30, 35 psu, respectively. In one series, media were enriched with 100 μg Cu l-1; responses were compared with those in controls with no extra Cu added. Enteromorpha, which is frequently used as a monitor species for heavy metal contamination, had relatively high Cu tissue levels (0.5–3.8 μmol Cu gdwt-1). Cu levels in E. prolifera controls (Scheldt) decreased with salinity; this was not the case with Cu levels in E. linza controls (Thermaikos). During the 10-d incubation algal protein contents and tissue Cu were rather stable. In E. linza (Thermaikos) algal protein contents were significantly lower than those of E. prolifera (Scheldt), although there was no indication for nitrogen limitation in E. linza. E. linza also had much lower glutathione pools than E. prolifera. Only under acute Cu stress (metal addition) did E. prolifera synthesise metal-binding thiols (phytochelatins). Phytochelatin pools are not suitable as an indicator of the Cu levels in these algae. The glutathione redox ratio GSH:(GSH + 0.5GSSG) was used as an indicator of (Cu-induced) oxidative stress. In E. prolifera (Scheldt) this ratio decreased with algal Cu content (P <0.05), from ~0.5 to ~0.2. The average glutathione ratios in Enteromorpha from the Scheldt and Thermaikos showed some oxidative stress induction with increasing algal Cu contents, however more clearly if Cu was added. As this redox ratio can also be influenced by environmental factors such as irradiance and desiccation, it may not be useful as an indicator for Cu-induced oxidative stress in situ.

copper glutathione redox macroalgae metal thiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, S. B., 1992. Effects of supplemental U.V.-B radiation on photosynthetic pigment, protein and glutathione contents in green algae. Envir. Exp. Bot. 32: 137–143.CrossRefGoogle Scholar
  2. Anderson, M. E., 1985. Tissue glutathione. In Greenwald, R. A. (ed.), Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton: 317–323.Google Scholar
  3. Brown, L. N., M. G. Robinson & B. D. Hall, 1988. Mechanisms for copper tolerance in Amphora coffaeformis - internal and external binding. Mar. Biol. 97: 581–586.CrossRefGoogle Scholar
  4. Clayton, J. R., Q. Dortch, S. S. Thoresen & S. I. Ahmed, 1988. Evaluation of methods for the separation and analysis of proteins and free amino acids in phytoplankton samples. J. Plankton Res. 10: 341–359.Google Scholar
  5. Corzo, A. & F. X. Niell, 1991. C/N ratio in response to nitrogen supply and light quality in Ulva rigida C. Agardh (Chlorophyta: Ulvophyceaea). Sci. Mar. 55: 405–411.Google Scholar
  6. De Knecht, J. A., P. L. M. Koevoets, J. A. C. Verkleij & W.H.O. Ernst, 1992. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol. 122: 681–688.CrossRefGoogle Scholar
  7. De Knecht, J. A., N. Van Baren, W. M. Ten Bookum, H. W. N. F. Sang, P. L. M. Koevoets, H. Schat & J.A.C. Verkleij, 1995. Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Sci. 106: 9–18.CrossRefGoogle Scholar
  8. De Vos, C. H. R., M. J. Vonk, R. Vooijs & H. Schat, 1992. Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalis. Plant Physiol. 98: 853–858.PubMedGoogle Scholar
  9. Gekeler, W., E. Grill, E. Winnacker & M. H. Zenk, 1988. Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch. Mikrobiol. 150: 197–202.Google Scholar
  10. Gledhill, M., M. Nimmo, S. J. Hill & M. Brown, 1997. The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. J. Phycol. 33: 2–11.CrossRefGoogle Scholar
  11. Haritonidis, S., 1978. A survey of the marine algae of Thermaikos Gulf, Thessaloniki, Greece. I. Distribution and seasonal periodicity. Bot. mar. XXI: 527–535.CrossRefGoogle Scholar
  12. Haritonidis, S. & P. Malea, 1995. Seasonal and local variation of Cr, Ni and Co concentrations in Ulva rigida C. Agardh and Enteromorpha linza (Linneaus) from Thermaikos Gulf, Greece. Envir. Pollut. 89: 319–327.CrossRefGoogle Scholar
  13. Haritonidis, S., 1996. Chapter 17: Greece. In Schramm, W. & P.H. Nienhuis (eds), Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication, Ecological Studies 123. Springer-Verlag, Berlin, Heidelberg: 403–419.Google Scholar
  14. Ho, Y. B., 1990. Ulva lactuca as bioindicator of metal contamination in intertidal waters in Hong Kong. Hydrobiologia 203: 73–81.CrossRefGoogle Scholar
  15. Koeman, R. P. T., 1985. The taxonomy of Ulva Linnaeus, 1753, and Enteromorpha, Link, 1820 (Chlorophyceae) in the Netherlands. PhD Thesis, University Groningen, Netherlands, Van Tienderen Press: 1–201.Google Scholar
  16. Miersch, J., F. Bärlocher, I. Bruns & G. J. Kraus, 1997. Effects of cadmium, copper, and zinc on growth and thiol content of aquatic hyphomycetes. Hydrobiologia 346: 77–84.CrossRefGoogle Scholar
  17. Müller M., M. Schirmer & J. Kettler, 1993. Use of Enteromorpha intestinalis (Chlorophyceae) for active biomonitoring of heavy metals in the Weser Estuary. Neth. J. Aquat. Ecol. 27: 189–195.CrossRefGoogle Scholar
  18. Nassiri, Y., J. L. Mansot, J. Wery, T. Ginsburger-Vogel & J. C. Amiard, 1997. Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum. Arch. envir. Contam. Toxicol. 33: 147–155.CrossRefGoogle Scholar
  19. Nieuwenhuize, J., Y. Maas & J. J. Middelburg, 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Mar. Chem. 45: 217–224.CrossRefGoogle Scholar
  20. Rajendran, K., P. Sampathkumar, C. Govindasamy, M. Ganesan, R. Kannan & L. Kannan, 1993. Levels of trace metals (Mn, Fe, Cu and Zn) in some Indian seaweeds. Mar. Poll. Bull. 26: 283–285.CrossRefGoogle Scholar
  21. Reed R. H. & L. Moffat, 1983. Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev. J. exp. mar. Biol. Ecol. 69: 85–103.CrossRefGoogle Scholar
  22. Rijstenbil, J. W. & T. C. W. Poortvliet, 1992. Copper and zinc in estuarine water: chemical speciation and bioavailability to the marine planktonic diatom Ditylum brightwellii. Envir. Toxicol. Chem. 11: 1615–1625.Google Scholar
  23. Rijstenbil, J. W, S. Haritonidis, P. Malea, J. van Drie & J. A. Wijnholds, 1993. Interactions of copper with trace metals and thiols in the macro-algae Enteromorpha prolifera (O.F. Müll) J. Ag., grown in water of the Scheldt Estuary (Belgium and S.W. Netherlands). Sci. Tot. Envir. Suppl. 1993: 539–549.Google Scholar
  24. Rijstenbil, J. W., J. W. M. Derksen, L. J. A. Gerringa, T. C. W. Poortvliet, A. Sandee, M. van den Berg, J. van Drie & J. A. Wijnholds, 1994. Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii (Grunow) West, grown in continuous cultures with high and low zinc levels. Mar. Biol. 119: 583–590.CrossRefGoogle Scholar
  25. Rijstenbil, J. W. & J. A. Wijnholds, 1996. HPLC analysis of nonprotein thiols in planktonic diatoms: pool size, redox state and response to copper and cadmium exposure. Mar. Biol. 127: 45- 54.CrossRefGoogle Scholar
  26. Rijstenbil, J. W., F. Dehairs, R. Ehrlich & J. A. Wijnholds, 1998. Effect of the nitrogen status on copper accumulation and pools of metal-binding peptides in the planktonic diatom Thalassiosira pseudonana. Aquat. Toxicol. 42: 187–209.CrossRefGoogle Scholar
  27. Robinson, N. J., 1989. Algal metallothioneins: secondary metabolites and proteins. J. appl. Phycol. 1: 5–18.CrossRefGoogle Scholar
  28. Say, P. J., I. G. Burrows & B. A. Whitton, 1990. Enteromorpha as a monitor of heavy metals in estuaries. Hydrobiologia 195: 119–126.CrossRefGoogle Scholar
  29. Seeliger, U. & C. Cordazzo, 1982. Field and experimental evaluation of Enteromorpha sp. as a quali-quantitative monitoring organism for copper and mercury in estuaries. Envir. Pollut. A 29: 197–206.CrossRefGoogle Scholar
  30. Siller-Cepeda, J. H., T. H. H. Chen & L. H. Fuchigami, 1991. High performance liquid chromatography analysis of reduced and oxidized glutathione in woody plant tissues. Plant Cell Physiol. 32: 1179–1185.Google Scholar
  31. Smith, I. K., A. C. Kendall, A. J. Keys, J. C. Turner & P. J. Lea, 1985. The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.). Plant Sci. 41: 11–17.CrossRefGoogle Scholar
  32. Stauber, J. L. & T. M. Florence, 1987. Mechanisms of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 94: 511- 519.CrossRefGoogle Scholar
  33. Stegenga, H. & I. Mol, 1983. Flora van de Nederlandse Zeewieren. KNNV Series 33. Erla Amsterdam Print: 1–263.Google Scholar
  34. Steffens, J. C., D. F. Hunt & B. G. Williams, 1986. Accumulation of non-protein metal-binding polypeptides (gamma-glutamylcysteinyl) n-glycine in selected cadmium-resistent tomato cells. J. Biol. Chem. 261: 13879–13982.PubMedGoogle Scholar
  35. Steffens, J. C., 1990. Heavy metal stress and the phytochelatin response. In Alscher, R.G. & J.R. Cumming (eds), Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Vol. 12. Wiley & Liss Inc., New York, 17: 377–394.Google Scholar
  36. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Fish. Res. Bd Can. Bull. 167: 1–311.Google Scholar
  37. Sueur, S., C. M. G. van den Berg & J. P. Riley, 1982. Measurement of the metal complexing ability of exudates of marine macroalgae. Limnol. Oceanogr. 27: 536–543.CrossRefGoogle Scholar
  38. Vögeli-Lange, R. & G. J. Wagner, 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol. 92: 1086–1093.PubMedCrossRefGoogle Scholar
  39. Zolotukhina, E. Y. & E. E. Gavrilenko, 1990. Binding of copper, cadmium, zinc and manganese in proteins of aquatic macrophytes. Fyziologiya Rastenii 37: 651–658.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J.W. Rijstenbil
    • 1
  • S. Haritonidis
    • 2
  • P. Malea
    • 2
  • M. Seferlis
    • 2
  • J.A. Wijnholds
    • 1
  1. 1.Centre for Estuarine and Coastal Ecology, NIOO-CEMONetherlands Institute of EcologyYersekeThe Netherlands (E-mail
  2. 2.Institute of Botany2Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations