Journal of Applied Electrochemistry

, Volume 29, Issue 4, pp 449–454

Factors governing the electrochemical synthesis of α-nickel (ii) hydroxide

  • R. S. Jayashree
  • P. Vishnu Kamath


The electrodeposition of α-nickel hydroxide is promoted by the simultaneous chemical corrosion of the electrode by an acidic nitrate bath. Chemical corrosion results in the formation of a poorly ordered layered phase which is structurally similar to α-nickel hydroxide and provides nucleation sites for the deposition of the latter. Therefore under conditions which enhance corrosion rates such as low current density (<1.3 mA cm−2), high temperature (60 ∘C), high nickel nitrate concentration (≥ 1M) and the resultant low pH (∼1.7), α-nickel hydroxide electrodeposition is observed, while β-nickel hydroxide forms under other conditions. Further, α-nickel hydroxide deposition is more facile on an iron electrode compared to nickel or platinum.

α-nickel hydroxide electrochemical synthesis nitrate bath 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz and F. Fievet, J. Power Sources 8 (1982) 229.Google Scholar
  2. 2.
    J.J. Braconnier, C. Delmas, C. Fouassier, M. Figlarz, B. Beaud-ouin and P. Hagenmuller, Rev. Chim. Min. 21 (1984) 496.Google Scholar
  3. 3.
    C. Faure, C. Delmas and P. Willmann, J. Power Sources 36 (1991) 497.Google Scholar
  4. 4.
    P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar and N. Munichandraiah, J. Electrochem. Soc. 141 (1994) 2956.Google Scholar
  5. 5.
    C. Faure, C. Delmas and M. Fouassier, J. Power Sources 35 (1991) 279.Google Scholar
  6. 6.
    S. LeBihan, J. Guenot and M. Figlarz, C.R. Acad. Sci., Ser. C. 270 (1970) 2131.Google Scholar
  7. 7.
    P.V. Kamath, J. Ismail, M.F. Ahmed, G.N. Subbanna and J. Gopalakrishnan, J. Mater. Chem. 3 (1993) 1285.Google Scholar
  8. 8.
    E.J. McHenry, Electrochem. Technol. 5 (1967) 275.Google Scholar
  9. 9.
    K.C. Ho, J. Electrochem. Soc. 134 (1987) 52C.Google Scholar
  10. 10.
    K.C. Ho and J. Jorne, J. Electrochem. Soc. 137 (1990) 149.Google Scholar
  11. 11.
    F. Portemer, A. Delahaye-Vidal and M. Figlarz, J. Electrochem. Soc. 139 (1992) 671.Google Scholar
  12. 12.
    C.C. Streinz, A.P. Hartman, S. Motupally and J.W. Weidner, J. Electrochem. Soc. 142 (1995) 1084.Google Scholar
  13. 13.
    S. Motupally, C.C. Streinz and J.W. Weidner, J. Electrochem. Soc. 142 (1995) 1401.Google Scholar
  14. 14.
    M. Murthy, G.S. Nagarajan, J.W. Weidner and J.W. Van Zee, J. Electrochem. Soc. 143 (1996) 2319.Google Scholar
  15. 15.
    M. Wohlfahrt-Mehrens, R. Oesten, P. Wilde and R.A. Huggins, Solid State Ionics 86-88 (1996) 841.Google Scholar
  16. 16.
    G.H.A. Therese and P.V. Kamath, J. Appl. Electrochem. 28 (1998) 539.Google Scholar
  17. 17.
    C.E. Baumgartner, J. Electrochem. Soc. 135 (1988) 36.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • R. S. Jayashree
    • 1
  • P. Vishnu Kamath
    • 1
  1. 1.Department of Chemistry, Central CollegeBangalore UniversityBangaloreIndia

Personalised recommendations