Advertisement

Hydrobiologia

, Volume 382, Issue 1–3, pp 113–118 | Cite as

Sulfate-induced isotopic variation in biogenic methane from a tropical swamp without anaerobic methane oxidation

  • Toshihiro Miyajima
  • Eitaro Wada
Article

Abstract

The oxidative consumption of methane (CH4) generally proceeds with a significant isotope fractionation, and isotopic variations in CH4 observed in sulfate-containing anaerobic sediments have often been interpreted as an indicator of anaerobic methane oxidation at the expense of sulfate. However, we found variations in δ13C value of CH4 depending on sulfate availability in tropical swamp sediments, in which no anaerobic CH4 oxidation was detected. In one sediment, the range of δ13C variation due to sulfate was as large as 20‰. The variations in δ13C of decomposed organic matter and CO2 failed to explain the variation in CH4 δ13C. We postulate a syntrophic linkage between sulfate-reducing and methanogenic bacteria via acetate as a mechanism of the observed δ'13C variation.

methanogenesis sediment stable carbon isotopes sulfate tropical forest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alperin, M. J., N. E. Blair, D. B. Albert, T. M. Hoehler & C. S. Martens, 1992. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment. Global biogeochem. Cycles 6: 271–291.Google Scholar
  2. Anderson, B. L., 1996. Modeling isotopic fractionation in systems with multiple sources and sinks with application to atmospheric CH4.Global biogeochem. Cycles 10: 191–196.CrossRefGoogle Scholar
  3. Barker, J. F. & P. Fritz, 1981. Carbon isotope fractionation during microbial methane oxidation. Nature 293: 289–291.CrossRefGoogle Scholar
  4. Coleman, D. D., J. B. Risatti & M. Schoell, 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim. cosmochim. Acta 45: 1033–1037.CrossRefGoogle Scholar
  5. Hansen, T. A., 1993. Carbon metabolism of sulfate-reducing bacteria. In Odom, J. M. & R. Singleton Jr. (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York: 21–40.Google Scholar
  6. Kalbasi, M. & M. A. & Tabatabai, 1985. Simultaneous determination of nitrate, chloride, sulfate, and phosphate in plant materials by ion chromatography. Commun. Soil Sci. Plant Anal. 16: 787–800.CrossRefGoogle Scholar
  7. King, G. M., 1992. Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv.Microb. Ecol. 12: 431–468.Google Scholar
  8. Miyajima, T., E. Wada, Y. T. Hanba & P. Vijarnsorn, 1997. Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils. Geochim. cosmochim. Acta 61: 3739–3751.CrossRefGoogle Scholar
  9. Mook W. G., J. C. Bommerson & W. H. Staverman, 1974.Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth. Planet. Sci. Lett. 22: 169–176.CrossRefGoogle Scholar
  10. Oremland, R. S., 1988. Biogeochemistry of methanogenic bacteria. In A. J. B. Zehnder, (ed.), Biology of Anaerobic Microorganisms. Wiley-Liss, New York: 641–705.Google Scholar
  11. Oremland, R. S. & D. G. Capone, 1988. Use of 'specific’ inhibitors in biogeochemistry and microbial ecology.Adv. Microb. Ecol. 10: 285–383.Google Scholar
  12. Ricci M. P, D. A. Merritt, K. H. Freeman & J. M. Hayes, 1994. Acquisition and processing of data for isotope-ratio-monitoring mass spectrometry. Org. Geochem. 21: 561–571.PubMedCrossRefGoogle Scholar
  13. Stevens, C. M., 1993.Isotope abundances in the atmosphere and sources. In: Khalil, M. A. K. (ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change. Springer-Verlag, Berlin: 62–88.Google Scholar
  14. Sugimoto, A. & E. Wada, 1993. Carbon isotope composition of bacterial methane in a soil incubation experiment: Contribution of acetate and CO2/H2. Geochim. cosmochim. Acta 57: 4015–4027.CrossRefGoogle Scholar
  15. Sugimoto, A., Xu Hong & E. Wada, 1991. Rapid and simple measurement of carbon isotope ratio of bubble methane using GC/C/IRMS. Mass Spectrosc.39: 261–266.Google Scholar
  16. Vijarnsorn, P., 1992. Problems related to coastal swamp land development in southern Thailand. In Kyuma, K., P. Vijarnsorn & A. Zakaria, (eds.), Coastal Lowland Ecosystems in Southern Thailand and Malaysia. Kyoto University, Kyoto: 3–16.Google Scholar
  17. Whiticar, M. J., 1993. Stable isotopes and global budgets. In Khalil, M. A. K. (ed.), Atmospheric Methane: Sources, Sinks, and Role in Global Change. Springer-Verlag, Berlin, Germany: 138–167.Google Scholar
  18. Whiticar, M. J., E. Faber, and M. Schoell, 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation–Isotope evidence. Geochim. cosmochim. Acta 50: 693–709.CrossRefGoogle Scholar
  19. Widdel, F. 1988. Microbiology and ecology of sulfate-and sulfurreducing bacteria. In Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms. Wiley-Liss, New York: 469–585.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Toshihiro Miyajima
    • 1
  • Eitaro Wada
  1. 1.Center for Ecological ResearchKyoto UniversityShimosakamoto, OtsuJapan

Personalised recommendations