The Histochemical Journal

, Volume 30, Issue 3, pp 123–140 | Cite as

Review: Fluorescent probes for living cells

  • Iain Johnson
Article

Abstract

The functional characteristics of fluorescent probes used for imaging and measuring dynamic processes in living cells are reviewed. Initial consideration is given to general design requirements for delivery, targeting, detectability and fluorescence readout, and current technologies for attaining them. Discussion then proceeds to the more application-specific properties of intracellurion indicators, membrane potential sensors, probes for proteins and lipids, and cell viability markers. 1998 © Chapman & Hall

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S. & Tsien, R.Y. (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694-7.Google Scholar
  2. Allbritton, N.L., Oancea, E., Kuhn, M.A. & Meyer, T. (1994) Source of nuclear calcium signals. Proc. Natl. Acad. Sci. USA 91, 12458-62.Google Scholar
  3. Alvarez-leefmans, F. J., Altamirano, J. & Crowe, W.E. (1995) Use of ion-selective microelectrodes and fluorescent probes to measure cell volume. Methods Neurosci. 27, 361-91.Google Scholar
  4. Amorino, G.P. & Fox, M.H. (1995) Intracellular Na+ measurements using Sodium Green tetraacetate with flow cytometry. Cytometry 21, 248-56.Google Scholar
  5. Anderson, M.T., Tjioe, I.M., Lorincz, M.C., Parks, D.R., Herzenberg, L.A., Nolan, G.P. & Herzenberg, L.A. (1996) Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins. Proc. Natl. Acad. Sci. USA 93, 8508-11.Google Scholar
  6. Antic, S. & Zecevic, D. (1995) Optical signals from neurons with internally applied voltage sensitive dyes. J. Neurosci. 15, 1392-405.Google Scholar
  7. Atar, D., Backx, P.H., Appel, M.M., Gao, W.D. & Marban, E. (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J. Biol. Chem. 270, 2473-7.Google Scholar
  8. Barber, K., Mala, R.R. Lambert, M.P., Qiu, R., Macdonald, R.C. & Klein, W.L. (1996) Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci. Lett. 207, 17-20.Google Scholar
  9. Bass, D., Parce, J.W., Dechatelet, L.R., Szejda, P., Seeds, M.C. & Thomas, M. J. (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910-17.Google Scholar
  10. Bastiaens, P. I.H. & Jovin, T.M. (1996) Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C βI. Proc. Natl. Acad. Sci. USA 93, 8407-12.Google Scholar
  11. Bedlack, R.S., Wei, M-D. & Loew, L.M. (1992) Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron 9, 393-403.Google Scholar
  12. Bedlack, R.S., Wei, M-D., Fox, S.H., Gross, E. & Loew, L.M. (1994) Distinct electric potentials in soma and neurite membranes. Neuron 13, 1187-93.Google Scholar
  13. Betz, W.J. & Bewick, G.S. (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200-3.Google Scholar
  14. Betz, W.J., Mao, F. & Bewick, G.S. (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci. 12, 363-75.Google Scholar
  15. Beumer, T.L., Veenstra, G.J.C., Hage, W.J. & DestrÉe, O.H.J. (1995) Whole mount immunohistochemistry on Xenopus embryos using far-red fluorescent dyes. Trends Genet 11, 9.Google Scholar
  16. Bi, G.-Q., Alderton, J.M. & Steinhardt, R.A. (1995) Calcium-regulated exocytosis is required for cell membrane resealing. J. Cell Biol. 131, 1747-58.Google Scholar
  17. Biwersi, J. & Verkman, A.S. (1991) Cell-permeable fluorescent indicator for cytosolic chloride. Biochemistry 30, 7879-7883.Google Scholar
  18. Bloom, J.A. & Webb, W.W. (1984) Photodamage to intact erythrocyte membranes at high laser intensities. J. Histochem. Cytochem. 32, 608-16.Google Scholar
  19. Brandes, R. & Bers, D.M. (1996) Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys. J. 71, 1024-35.Google Scholar
  20. Bright, G.R., Kuo, N.-T., Chow, D., Burden, S., Dowe, C. & Przybylski, R.J. (1996) Delivery of macromolecules into adherent cells via electroporation for use in fluorescence spectroscopic imaging and metabolic studies. Cytometry 24, 226-33.Google Scholar
  21. Brune, M., Hunter, J.L., Corrie, J.E.T. & Webb, M.R. (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actinomyosin subfragment 1 ATPase. Biochemistry 33, 8262-71.Google Scholar
  22. Brustugun, O.T., Mellgren, G., Gjertsen, B.T., Bjerkvig, R. & DØskeland, S.O. (1995) Sensitive and rapid detection of β-galactosidase expression in intact cells by microinjection of fluorescent substrate. Exp. Cell. Res. 219, 372-8.Google Scholar
  23. Bush, D.S. & Jones, R.L. (1990) Measuring intracellular Ca2+ levels in plant cells using the fluorescent probes indo-1 and fura-2. Plant Physiol. 93, 841-5.Google Scholar
  24. Callewaert, D.M., Radcliff, G., Waite, R., Lefevre, J. & Poulik, M.D. (1991) Characterization of effector- target conjugates for cloned human natural killer and human lymphokine activated killer cells by flow cytometry. Cytometry 12, 666-76.Google Scholar
  25. Chacon, E., Reece, J.M., Nieminen, A.-L., Zahrebelski, G., Herman, B. & Lemasters, J.J. (1994) Distribution of electrical potential, pH, free Ca2á and volume inside cultured adult rabbit cardiac myocytes during chemical hypoxia: a multiparameter digitized confocal microscopic study. Biophys. J. 66, 942-52.Google Scholar
  26. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802-5.Google Scholar
  27. Chao, J., Debasio, R., Zhu, Z., Giuliano, K.A. & Schmidt, B.F. (1996) Immunofluorescence signal amplification by the enzyme-catalyzed deposition of a fluorescent reporter substrate (CARD) Cytometry 23, 48-53.Google Scholar
  28. Chattopadhyay, A. (1990) Chemistry and biology of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: fluorescent probes of biological and model membranes. Chem. Phys. Lipids 53, 1-15.Google Scholar
  29. Chen, C.-S., Martin, O.C. & Pagano, R.E. (1997) Changes in the spectral properties of a plasma membrane lipid analog in the first seconds of endocytosis in living cells. Biophys J. 72, 37-50.Google Scholar
  30. Chen, L.B. (1989) Fluorescent labeling of mitochondria. Methods Cell Biol. 29, 103-23.Google Scholar
  31. Cornell-bell, A.H., Otake, L.R., Sadler, K., Thomas, P.G., Lawrence, S., Olsen, K., Gumkowski, F., Peterson, J.R. & Jamieson, J.D. (1993) Membrane glycolipid trafficking in living, polarized pancreatic acinar cells: assessment by confocal microscopy. Methods Cell Biol. 38, 221-40.Google Scholar
  32. Czarnik, A.W. (1995) Desperately seeking sensors. Chem. Biol. 2, 423-8.Google Scholar
  33. de Clerck, L.S., Bridts, C.H., Mertens, A.M., Moens, M.M. & Stevens, W.J. (1994) Use of fluorescent dyes in the determination of adherence of human leucocytes to endothelial cells and the effect of fluorochromes on cellular function. J. Immunol. Methods 172, 115-24.Google Scholar
  34. Denholm, E.M. & Stankus, G.P. (1995) Differential effects of two fluorescent probes on macrophage migration as assessed by manual and automated methods. Cytometry 19, 366-9.Google Scholar
  35. Dive, C., Watson, J.V. & Workman, P. (1990) Multi-parametric analysis of cell membrane permeability by two colour flow cytometry with complementary fluorescent probes. Cytometry 11, 244-52.Google Scholar
  36. Eddleman, C.S., Godell, C.M., Fishman, H.M., Tytell, M. & Bittner, G.D. (1995) Fluorescent labeling of the glial sheath of giant nerve fibers. Biol. Bull. 189, 218-19.Google Scholar
  37. Ehrenberg, B., Montana, V., Wei, M.-D., Wuskell, J.P. & Loew, L.M. (1988) Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys. J. 53, 785-94.Google Scholar
  38. Etter, E.F., Minta, A., Poenie, M. & Fay, F.S. (1996) Near-membrane [Ca2á] transients resolved using the Ca2+ indicator FFP18. Proc. Natl. Acad. Sci. USA 93, 5368-73.Google Scholar
  39. Farinas, J., Simanek, V. & Verkman, A.S. (1995) Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys. J. 68, 1613-20.Google Scholar
  40. Farkas, D.L., Wei, M.-D., Febbroriello, P., Carson, J.H. & Loew, L.M. (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys. J. 56, 1053-69.Google Scholar
  41. Fluhler, E., Burnham, V.G. & Loew, L.M. (1985) Spectra, membrane binding and potentiometric responses of new charge shift probes. Biochemistry 24, 5749-55.Google Scholar
  42. Fraser, S.E. (1996) Iontophoretic dye labeling of embryonic cells. Methods Cell Biol 51, 147-60.Google Scholar
  43. Galbraith, D.W., Lambert, G.M, Grebenok, R.J. & Sheen, J. (1995) Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Cell Biol. 50, 3-13.Google Scholar
  44. Ganesh, S., Klingel, S., Kahle, H. & Valet, G. (1995) Flow cytometric determination of aminopeptidase activities in viable cells using fluorogenic rhodamine 110 substrates. Cytometry 20, 334-40.Google Scholar
  45. Gee, K.R., Sun, W.-C., Klaubert, D.H., Haugland, R.P., Upson, R.H., Steinberg, T.H. & Poot, M. (1996) Novel derivatization of protein thiols with fluorinated fluoresceins. Tetrahedron Lett. 37, 7905-7908.Google Scholar
  46. Giuliano, K.A., Post, P.L., Hahn, K.M. & Taylor, D.L. (1995) Fluorescent protein biosensors: Measurement of molecular dynamics in living cells. Annu. Rev. Biophys. Biomol. Struct. 24, 405-34.Google Scholar
  47. Godwin, H.A. & Berg, J.M. (1996) A fluorescent zinc probe based on metal-induced peptide folding. J. Am. Chem. Soc. 118, 6514-515.Google Scholar
  48. GonzÁlez, J.E. & Tsien, R.Y. (1995) Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69, 1272-80.Google Scholar
  49. Gross, D. & Loew, L.M. (1989) Fluorescent indicators of membrane potential: microspectrofluorometry and imaging. Methods Cell. Biol. 30, 193-218.Google Scholar
  50. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. (1985) A new generation of Ca2á indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-50.Google Scholar
  51. HajnÓczky, G., Robb-gaspers, L.D., Seitz, M.B. & Thomas, A.P. (1995) Decoding of cytosolic calcium oscillations in the mitochondria Cell 82, 415-24.Google Scholar
  52. Haugland, R.P. (1990) Fluorescein substitutes for microscopy and imaging. In Optical Microscopy for Biology (edited by Herman, B. & Jacobson, K.), pp. 143-57. New York: Wiley-Liss.Google Scholar
  53. Haugland, R.P. (1996a) Fluorophores and their amine-reactive derivatives. In Handbook of Fluorescent Probes and Research Chemicals, 6th edn (edited by Spence, M.T.Z. ), pp. 7-46. Eugene, OR: Molecular Probes.Google Scholar
  54. Haugland, R.P. (1996b) Thiol-reactive probes. In Handbook of Fluorescent Probes and Research Chemicals, 6th edn (edited by Spence, M.T.Z. ), pp. 47-62. Eugene,OR: Molecular Probes.Google Scholar
  55. Haugland. R.P. (1996c) Enzymes, enzyme substrates and enzyme inhibitors. In Handbook of Fluorescent Probes and Research Chemicals, 6th edn (edited by Spence, M.T.Z.), pp. 201-50. Eugene, OR: Molecular Probes.Google Scholar
  56. Haugland. R.P. (1996d) Handbook of Fluorescent Probes and Research Chemicals, 6th edn Eugene, OR: Molecular Probes.Google Scholar
  57. Haugland, R.P. & Johnson, I.D. (1993) Detecting enzymes in living cells using fluorogenic substrates. J. Fluorescence 3, 119-27.Google Scholar
  58. Haydon, P.G., Marchese-ragona, S., Basarsky, T.A., Szulczewski, M. & Mccloskey, M. (1996) Near-field confocal optical spectroscopy (NCOS): subdiffraction optical resolution for biological systems. J. Microscopy 182, 208-16.Google Scholar
  59. Heim R. & Tsien, R.Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178-82.Google Scholar
  60. Heim, R., Prasher, D.C. & Tsien, R.Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12501-4.Google Scholar
  61. Heim, R., Cubitt, A.B. & Tsien, R.Y. (1995) Improved green fluorescence. Nature 373, 663-4.Google Scholar
  62. Henkel, A.W., LÖ bke, J. & Betz, W.J. (1996) FM 1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc. Natl. Acad. Sci. USA 93, 1918-23.Google Scholar
  63. Hofer, A.M. & Machen, T.E. (1993) Technique for in situ measurement of calcium in intracellular inositol 1,4,5- triphosphate-sensitive stores using the fluorescent indicator mag-fura-2. Proc. Natl. Acad. Sci. USA 90, 2598-602.Google Scholar
  64. HollÓ, Z., Homolya, L., Davis, W.C. & Sarkadi, B. (1994) Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim. Biophys. Acta 1191, 384-8.Google Scholar
  65. Homolya, L., HollÓ, Z., Germann, U.A., Pastan, I., Gottesman, M.M. & Sarkadi, B. (1993) Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 268, 21493-6.Google Scholar
  66. Honig, M.G. (1993) DiI labeling. In Neuroscience Protocols (edited by Wouterlood, F.G. ), pp. 93-050-16-01-93-050-16-20. Amsterdam: Elsevier Science Publishers.Google Scholar
  67. Honig, M.G. & Hume, R.I. (1989) DiI and DiO: versatile fluorescent dyes for neuronal labeling and pathway tracing. Trends Neurosci. 12, 333-41.Google Scholar
  68. Htun, H., Barsony, J., Renyi, I., Gould, D.L. & Hager, G.L. (1996) Visualization of glucocorticoid receptor translation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc. Natl. Acad. Sci. USA 93, 4845-0.Google Scholar
  69. Kaneshiro, E.S., Wyder, M.A., Wu, Y-P. & Cushion, M.T. (1993) Reliability of calcein acetoxymethyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. J. Microbiol. Methods 17, 1-16.Google Scholar
  70. Klingel, S., Rothe, G., Kellerman, W. & Valet, G. (1994) Flow cytometric determination of cysteine and serine proteinase activities in living cells with rhodamine 110 substrates. Methods Cell. Biol. 41, 449-59.Google Scholar
  71. Knecht, D.A. & Sheldon, E. (1995) Three-dimensional localization of wild-type and myosin II mutant cells during morphogenesis of Dictyostelium. Dev. Biol. 170, 434-44.Google Scholar
  72. Knowles, R.B., Sabry, J.H., Martone, M.E., Deerinck, T.J., Ellisman, M.H., Bassell, G.B. & Kosik, K.S. (1996) Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812-20.Google Scholar
  73. Kok, J.W. & Hoekstra, D. (1993) Fluorescent lipid analogues: applications in cell and membrane biology. In Fluorescent and Luminescent Probes for Biological Activity (edited by Mason, W.T.), pp. 100-19. London: Academic Press.Google Scholar
  74. Lampe, P.D. (1994) Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J. Cell Biol. 127, 1895-905.Google Scholar
  75. Larison, K.D., Bremiller, R., Wells, K.S., Clements, I. & Haugland, R.P. (1995) Use of a new fluorogenic phosphatase substrate in immunohistochemical applications. J. Histochem. Cytochem 43, 77-83.Google Scholar
  76. Lee, G., Delohery, T.M., Ronai, Z., Brandt-rauf, P.W., Pincus, M.R., Murphy, R.B. & Weinstein, I.B. (1993) A comparison of techniques for introducing macromolecules into living cells. Cytometry 14, 265-70.Google Scholar
  77. Lichtenfels, R., Biddison, W.E., Schulz, H., Vogt, A.B. & Martin, R. (1994) CARE-LASS (calcein release assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J. Immunol. Methods 172, 227-39.Google Scholar
  78. Lipp, P. & Niggli, E. (1993) Ratiometric confocal Ca2á measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14, 359-72.Google Scholar
  79. Lloyd, Q.P., Kuhn, M.A. & Gay, C.V. (1995) Characterization of calcium translocation across the plasma membrane of primary osteoblasts using a lipophilic calcium sensitive fluorescent dye, Calcium Green C18. J. Biol. Chem. 270, 22445-51.Google Scholar
  80. Loew, L.M. (1993) Confocal microscopy of potentiometric fluorescent dyes. Methods Cell Biol. 38, 195-209.Google Scholar
  81. Loew, L.M. (1998) Measuring membrane potential in single cells with confocal microscopy. In Cell Biology: A Laboratory Handbook, 2nd edn (edited by Celis, J.E.), pp. 375-379. San Diego, CA: Academic Press.Google Scholar
  82. Loew, L.M. (1996) Potentiometric dyes: imaging electrical activity of cell membranes. Pure Appl. Chem. 68, 1405-9.Google Scholar
  83. Loew, L.M., Cohen, L.B., Dix, J., Fluhler, E.N., Montana, V., Salama, G. & Jian-young, W. (1992) A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell and model membrane preparations. J. Membr. Biol. 130, 1-10.Google Scholar
  84. Lorincz, M., Roederer, M., Diwu, Z., Herzenberg, L.A. & Nolan, G.P. (1996) Enzyme-generated intracellular fluorescence for single-cell reporter gene analysis utilizing Escherichia coli β-glucuronidase. Cytometry 24, 321-9.Google Scholar
  85. Mcneil, P.L. (1989) Incorporation of macromolecules into living cells. Methods Cell. Biol. 29, 153-73.Google Scholar
  86. MartÍnez-ZaguilÁn, R., Parnami, G. & Lynch, R.M. (1996) Selection of fluorescent ion indicators for simultaneous measurements of pH and Ca2+ Cell Calcium 19, 337-49.Google Scholar
  87. Mason, W.T. (ed.) (1993) Fluorescent and Luminescent Probes for Biological Activity. London: Academic Press.Google Scholar
  88. Masters, B.R. & Chance, B. (1993) Redox confocal imaging: intrinsic fluorescent probes of cellular metabolism. In Fluorescent and Luminescent Probes for Biological Activity (edited by Mason, W.T.), pp. 44-57. London: Academic Press.Google Scholar
  89. Minta, A. & Tsien, R.Y. (1989) Fluorescent indicators for cytosolic sodium J. Biol. Chem. 264, 19449-57.Google Scholar
  90. Miyawaki, A., Llopis, J., Heim, R., Mccaffery, J.M., Adams, J.A., Ikura, M. & Tsien, R.Y. (1997) Fluorescent indicators for Ca2á based on green fluorescent proteins and calmodulin. Nature 388, 882-7.Google Scholar
  91. Montana, V., Farkas, D.L. & Loew, L.M. (1989) Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry 28, 4536-9.Google Scholar
  92. Moores, S.L., Sabry, J.H. & Spudich, J.A. (1996) Myosin dynamics in live Dictyostelium cells. Proc. Natl. Acad. Sci. USA 93, 443-6.Google Scholar
  93. Nett, W. & Deitmer, J.W. (1996) Simultaneous measurements of intracellular pH in the leech giant glial cell using 29,79-bis-(2-carboxyethyl)-5-,6-carboxyfluorescein and ion-sensitive microelectrodes. Biophys. J. 71, 394-402.Google Scholar
  94. Nolan, G.P., Fiering, S., Nicolas, J.-F. & Herzenberg, L.A. (1988) Fluorescence-activated cell analysis and sorting of viable mammalian cells based on β-Dgalactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl. Acad. Sci. USA 85, 2603-7.Google Scholar
  95. Novak, E.J. & Rabinovitch, P.S. (1994) Improved sensitivity in flow cytometric intracellular ionized calcium measurements using fluo-3/Fura Red fluorescence ratios. Cytometry 17, 135-41.Google Scholar
  96. Olson, K.R., Mcintosh, J.R. & Olmsted, J.B. (1995) Analysis of MAP4 function in living cells using green fluorescent protein chimeras. J Cell Biol 130, 639-50.Google Scholar
  97. OrmÖ, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y. & Remington, S.J. (1996) Crystal structure of the Aequoria victoria green fluorescent protein. Science 273, 1392-5.Google Scholar
  98. Overly, C.C., Lee, K.-D., Berthiaume, E. & Hollenbeck, P.J. (1995) Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc. Natl. Acad. Sci. USA 92, 3156-60.Google Scholar
  99. Owen, C.S. (1992) Comparison of the spectrum-shifting intracellular pH probes 5´ (and 6´)-carboxy-10- dimethylamino-3-hydroxyspiro[7H-benzo[c]xanthene- 7,1´ (3´H)-isobenzofuran]-3´-one and 2´,7´-biscarboxyethyl- 5 and 6)-carboxyfluorescein. Anal. Biochem. 204, 65-71.Google Scholar
  100. Pagano, R.E., Martin, O.C., Kang, H.C. & Haugland, R.P. (1991) A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J. Cell Biol. 113, 1267-79.Google Scholar
  101. Paramore, C.G., Turner, D.A. & Madison, R.D. (1992) Fluoescent labeling of dissociated fetal cells for tissue culture. J. Neurosci. Methods 44, 7-17.Google Scholar
  102. Paul, P., Kamisaka, Y., Marks, D.L. & Pagano, R.E. (1996) Purification and characterization of UDPglucose: ceramide glucosyltransferase from rat liver Golgi membranes. J. Biol. Chem. 271, 2287-93.Google Scholar
  103. Pecorino, L.T., Brockes, J.P. & Entwistle, A. (1996) Semi-automated positional analysis using laser scanning microscopy of cells transfected in a regenerating newt limb. J. Histochem. Cytochem. 44, 559-69.Google Scholar
  104. Persechini, A., Lynch, J.A. & Romoser, V.A. (1997) Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. Cell Calcium 22, 209-16.Google Scholar
  105. Plovins, A., Alvarez, A.M., Ibanez, M., Molina, M. & Nombela, C. (1994) Use of fluorescein-di-β-D-galactopyranoside (FDG) and C12-FDG as substrates for β-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Appl. Environ. Microbiol. 60, 4638-41.Google Scholar
  106. Poot, M., Zhang, Y.-Z., Kramer, J.A., Wells, K.S., Jones, L. J., Hanzel, D.K., Lugade, A.G., Singer, V.L. & Haugland, R.P. (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44, 1363-72.Google Scholar
  107. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M. J. (1992) Primary structure of the Aequoria victoria green fluorescent protein. Gene 111, 229-33.Google Scholar
  108. Raju, B., Murphy, E., Levy, L.A., Hall, R.D. & London, R.E. (1989) A fluorescent indicator for measuring cytosolic free magnesium. Am. J. Physiol. 256, C540-8.Google Scholar
  109. Rashid, F. & Horobin, R.W. (1990) A structure-activity analysis of mitochondrial staining by cationic probes and a discussion of the synergistic nature of imagebased and biochemical approaches. Histochemistry 94, 303-8.Google Scholar
  110. Read, N.D., Allan, W.T.G., Knight, H., Knight, M.R., MalhÓ, R., Russell, A., Shacklock, P.S. & Trewavas, A. J. (1992) Imaging and measurement of cytosolic free calcium in plant and fungal cells. J. Microscopy 166, 57-86.Google Scholar
  111. Reichel, C., Mathur, J., Eckes, P., Langenkemper, K., Koncz, C., Schell, J., Reiss, B. & Maas, C. (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc. Natl. Acad. Sci. USA 93, 5888-93.Google Scholar
  112. Richieri, G.V., Ogata, R.T. & Kleinfeld, A.M. (1992) A fluorescently labeled intestinal fatty acid binding protein. J. Biol. Chem. 267, 23495-501.Google Scholar
  113. Rink, T. J., Tsien, R.Y. & Pozzan, T. (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95, 189-96.Google Scholar
  114. Rizzuto, R., Brini, M., de Giorgi, F., Rossi, R., Heim, R., Tsien, R.Y. & Pozzan, T. (1996) Double labeling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr. Biol. 6, 183-8.Google Scholar
  115. Robinson. J.P., Carter, W.O. & Narayanan, P.K. (1994) Oxidative product formation analysis by flow cytometry. Methods Cell Biol. 41, 437-47.Google Scholar
  116. Roederer, M., Fiering, S. & Herzenberg, L.A. (1991) FACS-Gal: flow cytometric analysis and sorting of cells expressing reporter gene constructs. In METHODS: A Companion to Methods Enzymol. 2, 248-60.Google Scholar
  117. Ropp, J.D., Donahue, C.J., Wolfgang-Kimball, D., Hooley, J. J., Chin, J.Y.W., Hoffman, R.A., Cuthbertson, R.A. & Bauer, K.D. (1995) Aequorea green fluorescent protein analysis by flow cytometry. Cytometry 21, 309-17.Google Scholar
  118. Rosser,B.G., Powers, S.P. & Gores, G.J. (1993) Calpain activity increases in hepatocytes following addition of ATP. J. Biol. Chem. 268, 23593-600.Google Scholar
  119. Rotman, B., Zderic, J.A. & Edelstein, M. (1963) Fluorogenic substrates for β-D-galactosidases and phosphatases derived from fluorescein (3,6-dihydroxyfluoran) and its monomethyl ether Proc. Natl. Acad. Sci. USA 50, 1-6.Google Scholar
  120. Ryan, T.C., Weil, G. J., Newburger, P.E., Haugland, R. & Simons, E.R. (1990) Measurement of superoxide release in the phagovacuoles of immune complex-stimulated human neutrophils. J. Immunol. Methods 130, 223-33.Google Scholar
  121. Scheenen, W.J.J.M., Makings, L.R., Gross, L.R., Pozzan, T. & Tsien, R.Y. (1996) Photodegradation of indo-1 and its effect on apparent Ca2+ concentrations. Chem. Biol. 3, 765-74.Google Scholar
  122. Sekler, I., Kobayashi, S. & Kopito, R.R. (1996) A cluster of cytoplasmic histidine residues specifies pH dependence of the AE2 plasma membrane anion exchanger. Cell 86, 929-35.Google Scholar
  123. Shibuya, I. & Douglas, W.W. (1992) Calcium channels in rat melanotrophs are permeable to manganese, cobalt, cadmium and lanthanum, but not to nickel: evidence provided by fluorescence changes in fura-2 loaded cells. Endocrinology 131, 1936-41.Google Scholar
  124. Simons, T.J.B. (1993) Measurement of free Zn2+ ion concentration with the fluorescent probe mag-fura-2 (furaptra) J. Biochem. Biophys. Methods 27, 25-37.Google Scholar
  125. Sixou, S., Szoka, F.C., Green, G.A., Giusti, B., Zon, G. & Chin, D. J. (1994) Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res. 22, 662-8.Google Scholar
  126. Song, L., Hennink, E. J., Young, I.T. & Tanke, H. J. (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68, 2588-600.Google Scholar
  127. Song, L., Varma, C.A.G.O., Verhoeven, J.W. & Tanke, H.J. (1996) Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys J 70, 2959-68.Google Scholar
  128. Stauber, R., Gaitanaris, G.A. & Pavlakis, G.N. (1995) Analysis of trafficking of Rev and transdominant Rev proteins in living cells using green fluorescent protein fusions: transdominant Rev blocks the export of Rev from the nucleus to the cytoplasm. Virology 213, 439-49.Google Scholar
  129. Steinberg, T.H., Newman, A.S., Swanson, J.A. & Silverstein, S.C. (1987) ATP4 permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J. Biol. Chem. 262, 8884-8.Google Scholar
  130. Tan, W., Shi, Z.-Y., Smith, S., Birnbaum, D. & Kopelman, R. (1992) Submicrometer intracellular chemical optical fiber sensors. Science 258, 778-81.Google Scholar
  131. Terasaki, M. (1989) Fluorescent labeling of the endoplasmic reticulum. Methods Cell Biol. 29, 125-35.Google Scholar
  132. Terasaki, M. & Jaffe, L.A. (1991) Organization of the sea urchin endoplasmic reticulum and its reorganization during fertilization. J. Cell Biol. 114, 929-40.Google Scholar
  133. Terasaki, M. & Reese, T.S. (1992) Characterization of endoplasmic reticulum by colocalization of BiP and dicarbocyanine dyes J. Cell Sci. 101, 315-22.Google Scholar
  134. Tomasetto, C. Neveu, M.J., Daley, J. Horan, P.K. & Sager, R. (1993) Specificity of gap junction communication among mammary cells and connexin transfectants in culture. J. Cell Biol. 122, 157-67.Google Scholar
  135. Tse, F.W., Tse, A. & Hille, B. (1994) Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc. Natl. Acad. Sci. USA 91, 9750-4.Google Scholar
  136. Tsien, R.Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396-404.Google Scholar
  137. Tsien, R.Y. (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290, 527-8.Google Scholar
  138. Uster, P.S. (1993) In situ resonance energy transfer in microscopy: monitoring membrane fusion in living cells Methods Enzymol. 221, 239-46.Google Scholar
  139. van der Wolk, J.P.W., Klose, M., de Wit, J.G., den Blaauwen, T., Freudl, R. & Driessen, A.J.M. (1995) Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein J. Biol. Chem. 279, 18975-82.Google Scholar
  140. Verkman, A.S. (1990) Development and biological applications of chloride-sensitive fluorescent indicators. Am. J. Physiol. 257, C375-88.Google Scholar
  141. Waggoner, A. (1995) Covalent labeling of proteins and nucleic acids. Methods Enzymol. 246, 362-73.Google Scholar
  142. Wang, H.-G., Rapp, U.R. & Reed, J.C. (1996) Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629-38.Google Scholar
  143. Wang, X.F., Periasamy, A. & Herman, B. (1992) Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications. Crit. Rev. Anal. Chem. 23, 369-95.Google Scholar
  144. Wang, Y-L. (1989) Fluorescent analog cytochemistry: tracing functional protein components in living cells. Methods Cell Biol. 29, 1-12.Google Scholar
  145. Weston, S.A. & Parish, C.R. (1992) Calcein: a novel marker for lymphocytes which enter lymph nodes. Cytometry 13, 739-49.Google Scholar
  146. Whalley, T., Terasaki, M., Cho, M.-S. & Vogel, S.S. (1995) Direct membrane retrieval into large vesicles after exocytosis in sea urchin eggs. J. Cell Biol. 131, 1183-92.Google Scholar
  147. Whitaker, J.E., Haugland, R.P. & Prendergast, F.G. (1991) Spectral and photophysical studies of Benzo[c]- xanthene dyes: dual emission pH sensors. Anal. Biochem. 194, 330-44.Google Scholar
  148. Wolfbeis, O.S., FüRLINGER, E., Kroneis, H. & Marsoner, H. (1983) Fluorometric analysis. 1. A study on fluorescent indicators for measuring near-neutral (`physiological') pH values. Fresnius Z. Anal. Chem. 314, 119-24.Google Scholar
  149. Xu, C., Zipfel, W. Shear, J.B., Williams, R.M. & Webb, W.W. (1996) Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93, 10763-8.Google Scholar
  150. Zhang, Y.-Z., Naleway, J.J., Larison, K.D., Huang, Z. & Haugland, R.P. (1991) Detecting lacZ expression in living cells with new lipophilic, fluorogenic β-galactosidase substrates. FASEB J. 5, 3108-13.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • Iain Johnson
    • 1
  1. 1.Molecular Probes EugeneUSA

Personalised recommendations