, Volume 368, Issue 1–3, pp 111–122 | Cite as

Effects of sand bar openings on some limnological variables in a hypertrophic tropical coastal lagoon of Brazil

  • M. S. Suzuki
  • A. R. C. Ovalle
  • E. A. Pereira


This study describes the spatial and temporal dynamics of several physical, chemical and biological variables in the Grussai lagoon, and their relationship to ephemeral sand bar openings and to a constant in natura waste water input. The spatial variation in pH, dissolved oxygen, electrical conductivity, total alkalinity and nutrients (e.g. soluble reactive silicate, soluble reactive phosphate and ammonium) was associated to the anoxic and nutrient rich groundwater discharge, the development of aquatic macrophytes, the biological activities of phytoplanktonic community and the marine influence. During the period when the sand bar was closed (isolated), the lagoon water was supersaturated with dissolved oxygen and exhibited high values of pH (8–10), total alkalinity (3.000–5.000 µeq l-1), and chlorophyll a contents (60-300 µg l-1), and had low values of dissolved nutrients (nearly undetectable). These suggest a biological processes dominance. When the sand bar was opened, there was an enrichment with dissolved inorganic nutrients (e.g. ammonium and soluble reactive phosphorus up to 120 and 5 µM, respectively) and a decrease in pH (below 8), total alkalinity (below 3.000 µeq l-1) and dissolved oxygen during the initial second to eight days. Subsequently there was a period when the physical and chemical characteristics of seawater prevailed. The lagoon returned chemical to the pre-opening water conditions in a few days (∼ 10–20). This quick return implies highly efficient biological mechanisms. The high levels of chlorophyll a, total nitrogen and phosphorus in the water column indicate a high eutrophication stage in the Grussai lagoon during the sand bar closed periods.

tropical coastal lagoon eutrophication nutrients anthropogenic impacts sand bar opening brackish water ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F, T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  2. Barnes, R. S. K., 1980. Coastal Lagoons. Cambridge University Press. Cambridge, 106 pp.Google Scholar
  3. Carmouze, J. P., 1994. O metabolismo de ecossistemas aquáticos. Fundamentos teóricos, métodos de estudo e análises químicas. Editoras E. Blücher LTDa/FAPESP. São Paulo, Brasil, 254 pp.Google Scholar
  4. Carmouze, J. P. & P. Vasconcelos, 1992. The eutrophication of the lagoon of Saquarema, Brazil. Sci. Tot. Envir. Suppl. 1992: 851– 859.Google Scholar
  5. Caumette, P., 1992. Bacterial communities in coastal lagoons. An overview. Vie Milieu 42: 111–123.Google Scholar
  6. Comín, F. A., 1984. Características fisicas, químicas y fitoplancton de las lagunas costeras Ecañizada, Tancada Y Buda (Delta del Ebro). Oecol. Aquat. 7: 79–162.Google Scholar
  7. Comín, F. A., M. Martín, M. Menéndez, J. A. Romero & J. A. Herrera-Silveira, 1995. Integrated management of a coastal lagoon in the Ebro Delta. In Proceedings Second International Conference on the Mediterranean Coastal Environment, MEDCOAST 95. (E. Özhan, ed.). Tarragona, Spain: 24–27.Google Scholar
  8. Day, J. & A. Yañes-Arancibia, 1982. Coastal lagoons and estuaries: Ecosystem approach. Ciencia Interamericana. Ciências del Mar, OEA, Washington, D.C. 22: 11–26.Google Scholar
  9. Faria, B. M., 1993. Metabolismo e crises distróficas na laguna da Barra, Maricá, RJ. MsC Thesis, Univ. Federal Fluminense, Niterói, RJ, 85 pp.Google Scholar
  10. Goldman, J. C., J. J. McCarthy & D. G. Peavey, 1979. Growth rate influence on the chemichal composition of phytoplankton in ocean waters. Nature 279: 210–215.CrossRefGoogle Scholar
  11. Golterman, H. L., 1995. The labirinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (southern France). Hydrobiologia 315: 39–58.CrossRefGoogle Scholar
  12. Gran, G., 1952 Determination of equivalent point in potentiometric titration Analyst 77: 661–671.CrossRefGoogle Scholar
  13. Grasshoff, K. A., M. Ehrhardt & K. Kremling, 1983. Methods of seawater Analisys. 2nd edn. Verlag Chemie, 419 pp.Google Scholar
  14. Harris, G. P., 1980. Phytoplankton ecology, structure, function and fluctuation. Chapman and Hill, London, 384 pp.Google Scholar
  15. Herrera-Silveira, J. A., 1996. Salinity and nutrients in a tropical coastal lagoon with groudwater discharges to the Gulf of Mexico. Hydrobiologia 321: 165–179.CrossRefGoogle Scholar
  16. Herrera-Silveira, J. A. & F. A. Comín, 1995. Nutrient fluxes in a tropical coastal lagoon. Ophelia 42: 127–146.Google Scholar
  17. Jackson, M. L., 1958. Soil chemical analysis. Prentice-Hall Inc., USA, 345 pp.Google Scholar
  18. Kato, K., 1994. Planktonic bacterial DNA and RNA synthesis from algal extracellular products in a eutrophyc lake. FEMS Microb. Ecol. 15: 291–298.CrossRefGoogle Scholar
  19. Knoppers, B., 1993. Aquatic primary production in Coastal Lagoons. In B. Kjerfve (ed.), Coastal Lagoons Processes. Elsevier Oceanogr. 60: 219–262.Google Scholar
  20. Knoppers, B., L. D. Lacerda, S. P. Patchineelam, 1990. Nutrients, heavy metals and organic micropollutants in an eutrophic brazilian lagoon. Mar. Pollut. 21: 381–384.CrossRefGoogle Scholar
  21. Knoppers, B., B. Kjerfve, J. P. Caumouze, 1991. Trophic state and water turn-over time in six choked coastal lagoons in Brazil. Biogeochemistry 14: 149–166.CrossRefGoogle Scholar
  22. Lamego, A. R., 1945. O homem e o brejo. IBGE, Rio de Janeiro, 204 pp.Google Scholar
  23. Lanza, G., 1986. Calidad ambiental de la laguna de Mezcaltitán, Nayarit, México, durante el estiaje. An. Inst. Cienc. del Mar y Limnol. Univ. Nac. Autón. México 13: 315–328.Google Scholar
  24. Machado, E. C. & B. Knoppers, 1988. Sediment oxygen consumption in an organic-rich. Subtropical lagoon, Brasil. Sci. Total Envir. 75: 341–349.CrossRefGoogle Scholar
  25. Moreira, P. F & B. Knoppers, 1990. Ciclo anual da produção primária e nutrientes na lagoa de Guarapina, RJ. Acta Limnol. Brasil. 3: 275–290.Google Scholar
  26. Nixon, S.W., 1981. Remineralization and nutrient cicling in coastal marine ecosystems. In B. J. Neilson & L. E. Cronin (eds), Estuaries and Nutrients. Human Press, Chifton, N.J.: 111–138.Google Scholar
  27. Nixon, S. W., 1982. Nutrient dymanics, primary production and fisheries yields of lagoons. Oceanol. Acta, sp. ed. 5: 431–440.Google Scholar
  28. Nusch, E. A. & G. Palme, 1975. Biologische methoden für die praxis der gewisseruntersuchung. 1. Bestimmung des Chlorophyll a und Phaeopigmentgehaltes in Oberflächenwasser. GWF 116: 562–565.Google Scholar
  29. Reddy, K. R., M. M. Fisher & D. Ivanoff, 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypertrophyc lake. J. envir. Quality 25: 363–371.CrossRefGoogle Scholar
  30. Redfield, A. C., 1934. On the proportions of organic derivates in seawater and their relation to the volume composition of plankton. Liverpool: Ianos Memorial, 176 pp.Google Scholar
  31. Rozemberg, R., 1985. Eutrophication. The future marine coastal nuisance. Mar. Pollut. Bull. 16: 227–231.CrossRefGoogle Scholar
  32. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton and macrophytes in temperate freshwater and estuaries. Aquat. Bot. 41: 137–175.CrossRefGoogle Scholar
  33. Santamaría-del-Angel, E., R. Millán-NÚñez & Cajal-Medrano, 1992. Effecto de la energia cinetica turbulenta sobre la distribuición espacial de la clorofila a en una pequeña laguna costera. Cienc. Mar. 18: 1–16.Google Scholar
  34. Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In U. Sommer (ed.), Plankton Ecology. Spring-Verlag, USA: 57–106.Google Scholar
  35. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis, 2nd edn. Fish. Res. Bd. Can. Bull., Ottawa, Canada, 311 pp.Google Scholar
  36. Taylor, D., S. Nixon, S. Ganger & B. Buckley, 1995. Nutrient limitation and the eutrophication of coastal lagoons. Mar. Ecol. Prog. Ser. 127: 235–244.Google Scholar
  37. Wetzel, R. G., 1975. Limnology. Saunders Company, Philadelphia, USA, 743 pp.Google Scholar
  38. Yañez-Arancibia, A., 1981. Fish occurrence, diversity and abundance of two tropical coastal lagoons with ephemeral inlets on the pacific coast of Mexico. In Coastal lagoon research. Present and future. UNESCO Tech. Pap. Mar. Sci. 33: 233–260.Google Scholar
  39. Yañez-Arancibia, A., 1986. Ecología de la zona costera. Análisis de siete tópicos. AGT (ed.) S.A. México, D.F. 190 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. S. Suzuki
    • 1
  • A. R. C. Ovalle
    • 1
  • E. A. Pereira
    • 1
  1. 1.Laboratório de Ciências Ambientais, CBBUniversidade Estadual do Norte FluminenseCampos dos Goytacazes, RJBrazil

Personalised recommendations