, Volume 377, Issue 1–3, pp 183–194 | Cite as

Factors affecting feeding rate, reproduction and growth of an oligochaete Lumbriculus variegatus (Müller)

  • Matti T. Leppänen
  • Jussi V. K. Kukkonen


Worm density of a deposit feeding oligochaete (Lumbriculus variegatus) did not affect egestion whereas both temperature and sediment type had a significant influence. The worms egested less actively at the lowest temperature (6 °C). The egestion rate, expressed as mg dry feces produced, was highest in the sandy sediment and lowest in the sediment derived almost exclusively from decaying plant material. The amount of dry material and the volume of wet sediment passing through the worms varied between the test sediments; the results are probably dependent on the chosen unit of measure. Reproduction was significantly decreased in sandy sediment with low organic carbon content. Reproduction was also dependent on the worm size, larger worms reproducing more frequently. Most worms lost weight during the tests, but the loss was lowest in the sediment with the highest organic carbon content.

Lumbriculus feeding rate reproduction growth sediment toxicity tests 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ankley, G. T., D. A. Benoit, J. C. Balogh, T. B. Reynoldson, K. E. Day & R. A. Hoke, 1994. Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates. Envir. Toxicol. Chem. 13: 627–635.Google Scholar
  2. Appleby, A. G. & R. O. Brinkhurst, 1970. Defecation rate of three tubificid oligochaetes found in the sediment of Toronto harbour, Ontario. J. Fish. Res. Bd Can. 27: 1971–1982.Google Scholar
  3. ASTM, 1995. Standard guide for determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates. E 1688–95. American Society for Testing and Materials, Philadelphia.Google Scholar
  4. Bailey, H. C. & D. H. W. Liu, 1980. Lumbriculus variegatus, a benthic oligochaete as a bioassay organism. In J. C. Eaton, P. R. Parrish & A. C. Hendricks (eds), Aquatic Toxicology. ASTM STP 707, American Society for Testing and Materials: 205–215.Google Scholar
  5. Boese, B. L., H. Lee, II., D. T. Specht, R. C. Randall & M. H. Winsor, 1990. Comparison of aqueous and solid-phase uptake for hexachlorobenzene in the tellinid clam Macoma nasuta (Conrad): A mass balance approach. Envir. Toxicol. Chem. 9: 221–231.Google Scholar
  6. Burton, G. A., Jr., M. K. Nelson & C. G. Ingersoll, 1992. Freshwater benthic toxicity tests. In G. A. Burton, Jr. (ed.), Sediment Toxicity Assessment. Lewis Publishers, Inc., Chelsea: 213–240.Google Scholar
  7. Cammen, L. M., 1989. The relationship between ingestion rate of deposit feeders and sediment nutritional value. In G. Lopez, G. Taghon & J. Levinton (eds), Lecture Notes on Coastal and Estuarine Studies. Springer-Verlag, Heidelberg: 201–246.Google Scholar
  8. Crowder, M. J. & D. J. Hand, 1996. Analysis of repeated measures. Chapman & Hall, London.Google Scholar
  9. Day, R. W. & G. P. Quinn, 1989. Comparisons of treatments after an analysis of variance in ecology. Ecol. Monogr. 59: 433–463.CrossRefGoogle Scholar
  10. Fisher, J. B., W. J. Lick, P. L. McCall & J. A. Robbins, 1980. Vertical mixing of lake sediments by tubificid oligochaetes. J. Geophys. Res. 85: 3997–4006.CrossRefGoogle Scholar
  11. Giesy, J. P. & R. A. Hoke, 1989. Freshwater sediment toxicity bioassessment: rationale for species selection and test design. J. Great Lakes Res. 15: 539–569.CrossRefGoogle Scholar
  12. Glass, G. V., P. D. Peckham & J. R. Sanders, 1972. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Rev. Educ. Res. 42: 237–288.CrossRefGoogle Scholar
  13. Green, R. H., 1993. Application of repeated measures designs in environmental impact and monitoring studies. Aust. J. Ecol. 18: 81–98.Google Scholar
  14. Hickey, C. W. & M. L. Martin, 1995. Relative sensitivity of five benthic invertebrate species to reference toxicants and resin-acid contaminated sediments. Envir. Toxicol. Chem. 14: 1401–1409.Google Scholar
  15. Kaster, J. L., J. V. Klump, J. Meyer, J. Krezoski & M. E. Smith, 1984. Comparison of defecation rates of Limnodrilus hoffmeisteri Claparéde (Tubificidae) using two different methods. Hydrobiologia 111: 181–184.CrossRefGoogle Scholar
  16. Keilty, T. J. & P. F. Landrum, 1990. Population-specific toxicity responses by the freshwater oligochaete, Stylodrilus heringianus, in natural Lake Michigan sediments. Envir. Toxicol. Chem. 9: 1147–1154.Google Scholar
  17. Keilty, T. J., D. S. White & P. F. Landrum, 1988a. Sublethal responses to endrin in sediment by Stylodrilus heringianus (Lumbriculidae) as measured by a 137Cesium marker layer technique. Aquat. Toxicol. 13: 251–270.CrossRefGoogle Scholar
  18. Keilty, T. J., D. S. White & P. F. Landrum, 1988b. Sublethal responses to endrin in sediment by Limnodrilus hoffmeisteri (Tubificidae), and in mixed-culture with Stylodrilus heringianus (Lumbriculidae). Aquat. Toxicol. 13: 227–250.CrossRefGoogle Scholar
  19. Krezoski, J. R. & J. A. Robbins, 1985. Vertical distribution of feeding and particle-selective transport of 137Cs in lake sediments by lumbriculid oligochaetes. J. Geophys. Res. 90: 11999–12006.Google Scholar
  20. Kukkonen, J. & P. F. Landrum, 1994. Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (Oligochaeta). Envir. Toxicol. Chem. 13: 1457–1468.Google Scholar
  21. Kukkonen, J. & P. F. Landrum, 1995a. Effects of sediment-bound polydimethylsiloxane on the bioavailability and distribution of benzo(a)pyrene in lake sediment to Lumbriculus variegatus. Envir. Toxicol. Chem. 14: 523–531.Google Scholar
  22. Kukkonen, J. & P. F. Landrum, 1995b. Measuring assimilation efficiencies for sediment-bound PAH and PCB congeners by benthic organisms. Aquat. Toxicol. 32: 75–92.CrossRefGoogle Scholar
  23. Leppänen, M. & J. V. K. Kukkonen 1997. Use of Lumbriculus variegatus (Oligochaeta: Lumbriculidae) in sediment toxicity tests. In H. Högmander & A. Oikari (eds), Proceedings, Third Finnish Conference of Environmental Sciences. Ambiotica 1: 194–197.Google Scholar
  24. Lopez, G. R. & J. S. Levinton, 1987. Ecology of deposit-feeding animals in marine sediments. Q. Rev. Biol. 62: 235–260.CrossRefGoogle Scholar
  25. Lotufo, G. R. & J. W. Fleeger, 1996. Toxicity of sedimentassociated pyrene and phenanthrene to Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae). Envir. Toxicol. Chem. 15: 1508–1516.CrossRefGoogle Scholar
  26. Mayer, L. M., Z. Chen, R. H. Findlay, J. Fang, S. Sampson, R. F. L. Self, P. A. Jumars, C. Quetel & O. F. X. Donard, 1996. Bioavailability of sedimentary contaminants subject to depositfeeder digestion. Envir. Sci. Technol. 30: 2641–2645.CrossRefGoogle Scholar
  27. McCall, P. L. & J. B. Fisher, 1980. Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments. In R. O. Brinkhurst & D. G. Cook (eds), Aquatic Oligochaeta Biology, Plenum Press, New York: 253–317.Google Scholar
  28. OECD, 1995. Guidance document for aquatic effects assessment. OECD Envir. Monogr. 92: 1–116.Google Scholar
  29. Paine, M. D., 1996. Repeated measures designs. Envir. Toxicol. Chem. 15: 1439–1441.CrossRefGoogle Scholar
  30. Phipps, G. L., G. T. Ankley, D. A. Benoit & V. R. Mattson, 1993. Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Envir. Toxicol. Chem. 12: 269–279.Google Scholar
  31. Rasmussen, J. B., 1984. Comparison of gut contents and assimilation efficiency of fourth instar larvae of two coexisting chironomids, Chironomus riparius Meigen and Glyptotendipes paripes (Edwards). Can. J. Zool. 62: 1022–1026.CrossRefGoogle Scholar
  32. Reible, D. D., V. Popov, K. T. Valsaraj, L. J. Thibodeaux, F. Lin, M. Dikshit, M. A. Todaro & J. W. Fleeger, 1996. Contaminant fluxes from sediment due to tubificid oligochaete bioturbation. Wat. Res. 30: 704–714.CrossRefGoogle Scholar
  33. Reynoldson, T. B., P. Rodriguez & M. M. Madrid, 1996. A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Müller, 1774) from the North American Great Lakes and Northern Spain. Hydrobiologia 334: 199–206.CrossRefGoogle Scholar
  34. Ristola, T., J. Pellinen, P. L. Van Hoof, M. Leppänen & J. Kukkonen, 1996. Characterization of Lake Ladoga sediments II. Toxic chemicals. Chemosphere 32: 1179–1192.CrossRefGoogle Scholar
  35. Schubauer-Berigan, M. K., P. D. Monson, C. W. West & G. T. Ankley, 1995. Influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus. Envir. Toxicol. Chem. 14: 713–717.Google Scholar
  36. Taghon, G. L. & R. R. Greene, 1990. Effects of sediment-protein concentration on feeding and growth rates of Abarenicola pacifica Healy et Wells (Polychaeta: Arenicolidae). J. exp. mar. Biol. Ecol. 136: 197–216.CrossRefGoogle Scholar
  37. West, C. W., V. R. Mattson, E. N. Leonard, G. L. Phipps & G. T. Ankley, 1993. Comparison of the relative sensitivity of three benthic invertebrates to copper-contaminated sediments from the Keweenaw Waterway. Hydrobiologia 262: 57–63.Google Scholar
  38. Weston, D. P., 1990. Hydrocarbon bioccumulation from contaminated sediment by the deposit-feeding polychaete Abarenicola pacifica. Mar. Biol. 107: 159–169.CrossRefGoogle Scholar
  39. White, D. S., P. C. Klahr & J. A. Robbins, 1987. Effects of temperature and density on sedimet reworking by Stylodrilus heringianus (Oligochaeta: Lumbriculidae). J. Great Lakes Res. 13: 147–156.Google Scholar
  40. Wiederholm, T., A.-M. Wiederholm & G. Milbrink, 1987. Bulk sediment bioassays with five species of fresh-water oligochaetes. Wat. Air Soil Pollut. 36: 131–154.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Matti T. Leppänen
  • Jussi V. K. Kukkonen

There are no affiliations available

Personalised recommendations