Hydrobiologia

, Volume 377, Issue 1–3, pp 147–159

COMBO: a defined freshwater culture medium for algae and zooplankton

  • Susan S. Kilham
  • Daniel A. Kreeger
  • Scott G. Lynn
  • Clyde E. Goulden
  • Lazaro Herrera
Article

Abstract

In order to conduct experiments on interactions between animals and food organisms, it is necessary to develop a medium that adequately supports the growth of both algae and zooplankton without the need to alter the medium to accommodate either the algae or the animals. We devised a freshwater medium, named COMBO, that supports excellent growth of both algae and zooplankton. Two types of algae, Ankistrodesmus falcatus and Stephanodiscus hantzschii, were reared in COMBO and their growth rates were not significantly different from those of algae grown in a reference medium (WC). One of these algae, A. falcatus, was then fed to a cladoceran, Daphnia pulicaria, which was also cultured in COMBO, and the resulting fecundities of D. pulicaria were compared to those of animals reared in natural surface water. We also determined whether the value of COMBO as a medium for D. pulicaria was affected by modifications in nitrogen or phosphorus concentration to evaluate whether the new medium will be useful in nutritional research. Lowering the N or P content of COMBO did not affect the reproductive performance of D. pulicaria. Other researchers have also reported excellent growth and reproduction by numerous algae and zooplankton reared in COMBO. Our results suggest that COMBO is an effective artificial, defined culture medium capable of supporting robust growth and reproduction of both freshwater algae and zooplankton.

algae culture media trace metals zooplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, E.W., 1994. Microalgae. Biotechnology and Microbiology. Cambridge University Press, 293 pp.Google Scholar
  2. Brand, L. E., 1981. The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton. J. exp. mar. Biol. Ecol. 50: 119–132.CrossRefGoogle Scholar
  3. Brand, L. E., R. R. L. Guillard & L. S. Murphy, 1981. A method for the rapid and precise determination of acclimated phytoplankton reproductive rates. J. Plankton Res. 3: 93–101.Google Scholar
  4. Carmichael, W. W. & P. R. Gorham, 1974. An improved method for obtaining axenic clones of planktonic blue-green algae. J. Phycol. 10: 238–240.CrossRefGoogle Scholar
  5. Conklin, D. E. & L. Provasoli, 1977. Nutritional requirements of the water flea, Moina macrocopa. Biol. Bull. 152: 337–350.Google Scholar
  6. Elendt, B. P. & W. R. Bias, 1990. Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing: effects of the optimization of culture conditions on life history parameters of Daphnia magna. Wat. Res. 24: 1157–1167.CrossRefGoogle Scholar
  7. Goulden, C. E., L. L. Henry & A. J. Tessier, 1982. Body size, energy reserves, and competitive ability in three species of Cladocera. Ecology 63: 1780–1789.CrossRefGoogle Scholar
  8. Guillard, R. R. L., 1975. Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chantey (eds), Culture of Marine Invertebrate Animals. Plenum Publishers, New York: 29–60.Google Scholar
  9. Guillard, R. R. L. & P. E. Hargraves, 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32: 234–236.Google Scholar
  10. Keating, K. I., 1985. A system of defined (sensu stricto) media for daphnid (Cladocera) culture. Wat. Res. 19: 73–78.CrossRefGoogle Scholar
  11. Keating, K. I., P. B. Caffrey & K. A. Schultz, 1989. Inherent problems in reconstituted water. In U. M. Cowgirl & L. R. Williams (eds), Aquatic Toxicology and Hazard Assessment, Vol. 12. ASTM STP 1027: 367–378.Google Scholar
  12. Keller, M. D., R. C. Selvin, W. Claus & R. R. L. Guillard, 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol. 23: 633–638.CrossRefGoogle Scholar
  13. Kilham, S. S., D. A. Kreeger, C. E. Goulden & S. G. Lynn, 1997a. Effects of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus. Freshwat. Biol. 38: 591–596.CrossRefGoogle Scholar
  14. Kilham, S. S., D. A. Kreeger, C. E. Goulden & S. G. Lynn, 1997b. Effects of algal food quality on fecundity and population growth rates of Daphnia. Freshwat. Biol. 38: 639–647.CrossRefGoogle Scholar
  15. Klaveness, D. & R. R. L. Guillard, 1975. The requirement for silicon in Synura petersenii (Chrysophyceae). J. Phycol. 11: 349–355.CrossRefGoogle Scholar
  16. Kreeger, D. A. & C. J. Langdon, 1993. Effect of dietary protein content on growth of juvenile mussels, Mytilus trossulus (Gould 1850). Biol. Bull. 185: 123–139.Google Scholar
  17. Lehman, J. T. 1976a. Photosynthetic capacity and luxury uptake of carbon during phosphate limitation in Pediastrum duplex (Chlorophyceae). J. Phycol. 12: 190–193.CrossRefGoogle Scholar
  18. Lehman, J. T. 1976b. Ecological and nutritional studies on Dinobryon Ehrenb.: Seasonal periodicity and the phosphate toxicity problem. Limnol. Oceanogr. 21: 646–658.CrossRefGoogle Scholar
  19. Marking, L. L.& V. K. Dawson, 1973. Toxicity of quinaidine sulfate to fish. Invest. Fish Contr. No. 48, U.S. Fish andWildlife Service, Washington, D.C, 8 pp.Google Scholar
  20. Morel, F. M. M., J. C. Westall, J. G. Reuter & J. P. Chaplick, 1975. Description of the algal growth media 'Aquil' and 'Fraquil'. Water Quality Laboratory, Ralph Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Technical Report 16, 33 pp.Google Scholar
  21. Murphy, J. & M. Davidoff, 1972. The result of improved nutrition on the Lansing effect in Moina macrocopa. Biol. Bull. 142: 302–309.Google Scholar
  22. Rand, G. M. 1995. Fundamentals of Aquatic Toxicology. Effects, Environmental Fate and Risk Assessment. 2nd edn. Taylor and Francis, Washington.Google Scholar
  23. Stein, J. R. (ed.), 1973. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, 448 pp.Google Scholar
  24. Urabe, J., J. Clasen & R. W. Sterner, 1997. Phosphorous limitation of Daphnia growth: Is it real? Limnol. Oceanogr. 42: 1436–1443.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Susan S. Kilham
  • Daniel A. Kreeger
  • Scott G. Lynn
  • Clyde E. Goulden
  • Lazaro Herrera

There are no affiliations available

Personalised recommendations