Hydrobiologia

, Volume 357, Issue 1–3, pp 165–171

The nutrient content and the release of nutrients from fish food and faeces

  • Golam Kibria
  • Dayanthi Nugegoda
  • Robert Fairclough
  • Paul Lam
Article

Abstract

The fish food and faeces were fractioned into the differentcomponents of phosphorus and nitrogen. There was a rapid release ofphosphorus from the fish food and faeces and a decrease thereafterwhereas ammonium release was slow at first with the rate increasingwith time. Both temperature and pH affected the release of nutrientsfrom fish food and faeces. The release of phosphorus and nitrogen washigher at higher temperatures. The maximum release of phosphorus wasat pH 4.0 whereas nitrogen release was maximum at neutral (7.0) toalkaline (10.0) media.

fish food faeces nutrient nitrogen phosphorus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, G. L. & S. J. Rowland, 1996. The silver perch industry: research progress and priorities toward developing cost-effective diets. Austasia Aquaculture 10: 37-40.Google Scholar
  2. AOAC, 1990. Official methods of analysis of the Association of Official Analytical Chemists (AOAC) (Editor K. Helrich). 15th edn., vol. 1. Virginia, USA.Google Scholar
  3. Beveridge, M., 1987. Cage Aquaculture. Fishing News Ltd. Farnham, England: 351 pp.Google Scholar
  4. Bostrom, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133-155.Google Scholar
  5. Boyd, C. E., 1990. Water quality in ponds for aquaculture. Alabama Agricultural Experiment Station. Auburn University and Birmingham Publishing Co. Alabama, USA, 462 pp.Google Scholar
  6. Butz, I. & B. Vens-Cappell, 1982. Organic load from the metabolic products of rainbow trout fed with dry food. In Albaster, J. S. (ed.), Report of the EIFAC Workshop on Fish Farm Effluents. Silkeborg, Denmark, 26-28 May 1981. EIFAC Tech. Pap. 41: 57-70.Google Scholar
  7. Chamberlain, W. & J. Shapiro, 1969. On the biological significance of phosphate analysis: Comparison of standard and new methods with a bioassy. Limnol. Oceanogr. 14: 921-927.Google Scholar
  8. Fivlstad, S., J. M. Thomassen, M. J. Smith, H. Kjartansson & A-B. Anderson, 1990. Metabolic production rates from Atlantic salmon (Salmo salarL.) and Arctic char (Salvelinus alpinusL.) reared in single pass land based brackish water and sea water systems. Aquacult. Engin. 9: 1-21.Google Scholar
  9. Foy, R. H. & R. Rosell, 1991a. Fractionation of phosphorus and nitrogen loadings from a Northern Ireland Fish Farm. Aquaculture 96: 31-42.Google Scholar
  10. Foy, R. H. & R. Rosell, 1991b. Loadings of nitrogen and phosphorus, suspended solids and BOD from a Northern Ireland fish farm. Aquaculture 96: 17-30.Google Scholar
  11. Hakanson, L., A. Wrvik, T. Makinene & B. Molleg, 1988. Basic concepts concerning assessments of environmental effects of marine fish farms. Nordic Council of Ministers, Copenhagen, 103 pp.Google Scholar
  12. Hoelzi, A. & B. Vens-Cappell, 1980. Profitability of food-fish production in net cages. Fisch. Teichwirt. 32: 2-5.Google Scholar
  13. Johnsen, F., M. Hillestad & E. Austreng, 1993. High energy diets for Atlantic salmon. Effect on pollution. In Kaushik, S. J. & P. Luquet (eds), Fish Nutrition in Practice. INRA, Paris: 391-401.Google Scholar
  14. Kibria, G., D. Nugegoda, R. Fairclough & P. Lam, 1996. Australian native species in aquaculture. Victorian Nat. 113: 264-267.Google Scholar
  15. Kristiansen, G. & D. O. Hessen, 1992. Nitrogen and phosphorus excretion from the noble crayfish, Astacus astacus L., in relation to food type and temperature. Aquaculture 102: 245-264.Google Scholar
  16. Laird, L. M. & T. Needham, 1988. Salmon and Trout Farming. Ellis Horwood Limited, England, 271 pp.Google Scholar
  17. Makinen, T., S. Lindgren & P. Esklinen, 1988. Sieving as an effluent treatment for aquaculture. Aquacult. Engin. 7: 367-377.Google Scholar
  18. Penczak, T., W. Galicka, M. Molinski, E. Kusto & M. Zalewski, 1982. The enrichment of a mesotrophic lake by carbon, phosphorus and nitrogen from the cage aquaculture of rainbow trout, Salmo gairdneri. J. Appl. Ecol. 19: 371-393.Google Scholar
  19. Persson, G., 1988. Relationships between feed, productivity and pollution in the farming of large rainbow trout (Salmo gairdneri). Swedish Environmental Protection Agency, Stockholm, PM 3534, 48 pp.Google Scholar
  20. Pettersson, K., 1988. The mobility of phosphorus in fish-foods and fecals. Verh. int. ver. Limnol. 23: 200-206.Google Scholar
  21. Phillips, M., R. Clarke & A. Mowat, 1993. Phosphorus leaching from Atlantic salmon diets. Aquacult. Engin. 12: 47-54.Google Scholar
  22. State of Victoria, 1995. Nutrient management strategy for Victorian Inland Waters. State of Victoria, Australia, 73 pp.Google Scholar
  23. Tecator, 1990. Instruction manual. The Aquatec System. Hoganas: Sweden, 49 pp.Google Scholar
  24. Welch, E. B. & T. Lindell, 1980. Ecological effects of wastewater. - Applied limnology and pollutant effects. Chapter 4. Nutrient cycles: 54-81.Google Scholar
  25. Zar, J. H., 1984. Biostatistical analysis. Prentice-Hill, Englewood Cliffs, New Jersey, 620 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Golam Kibria
    • 1
  • Dayanthi Nugegoda
    • 1
  • Robert Fairclough
    • 2
  • Paul Lam
    • 3
  1. 1.Department of Environmental ManagementVictoria University of TechnologyMelbourneAustralia
  2. 2.Department of Food TechnologyVictoria University of TechnologyAustralia
  3. 3.Chemistry and Biology DepartmentCity University of Hong KongKowloonHong Kong

Personalised recommendations