, Volume 353, Issue 1–3, pp 171–180 | Cite as

Intertidal zonation of benthic macrofauna in a subtropical salt marsh and nearby unvegetated flat (SE, Brazil)

  • Sérgio A. Netto
  • Paulo C. Lana


Intertidal zonation and seasonal variability of benthic macrofaunawere analysed along a Spartina alterniflora (Loisel) marshand nearby unvegetated flat in a subtropical bay. Fivereplicate samples were taken along six tidal levels from the uppermarsh, limited by mangroves, to the lower unvegetated flat.Sediment composition, live and dead above- and below-ground biomassof S. alterniflora and detritus biomass from the vegetatedand unvegetated areas were determined to evaluate whethervariations on plant structure and detritus along the 25 m transectaffect the dynamics of benthic invertebrates. Composition andabundance of invertebrates varied with the elevation and plantcover clearly plays a key role on the distribution patterns of themacrofauna. Below-ground and dead above-ground biomass presentedthe highest correlation with the densities of the invertebrates.Vertical distribution of benthic fauna, however, appears not to beaffected by bellow-ground fraction. Higher detritus biomass in theupper unvegetated flat coincided with higher densities ofdetritivorous or omnivorous species in this level. An eruptivealgal growth during summer affected positively most of the dominantspecies.

zonation macrofauna salt marsh tidal flat ParanaguáBay Brazil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, P., 1990. Saltmarsh ecology. Cambridge University Press, New York, 461 pp.Google Scholar
  2. Alongi, D., 1990. Community dynamics of free-living nematodes in some tropical mangrove and sandflat habitats. Bull. mar. Sci. 46: 358–373.Google Scholar
  3. Angulo, R. J. & A. C. P. Muller, 1990. Preliminary characterization of some tidal flat ecosystems of the State of Parana coast, Brasil. Anais do II Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira, Publ. ACIESP 71: 158-16Google Scholar
  4. Balla, S. A. & J. A. Davis, 1995. Seasonal variation in macroinvertebrate fauna of wetlands of differing water regime and nutrient status on the Swan coastal plain, Western Australia. Hydrobiologia 299: 147–161.Google Scholar
  5. Bemvenuti, C. E., S. A. Cataneo & S. A. Netto, 1992. Características estruturais da macrofauna bentônica em dois pontos da região estuarial da Lagoa dos Patos. Atlântica 14: 5–28.Google Scholar
  6. Clarke, R. K., 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18: 117–143.Google Scholar
  7. Clarke, R. K. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92: 205–219.Google Scholar
  8. Costa, C. S. B. & A. J. Davy, 1992. Coastal saltmarsh communities of Latin America. In U. Seeliger (ed.), Coastal Plant Communities in Latin America, Am. Press, New York: 179–199.Google Scholar
  9. Davy, A. J. & C. S. B. Costa, 1992. Development and organisation of saltmarsh communities. In U. Seeliger (ed.), Coastal Plant Communities in Latin America, Am. Press, New York: 157–177.Google Scholar
  10. Dean,. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. sed. Petrol. 44: 242–248.Google Scholar
  11. Greensmith, J. T. & E. V. Tucker, 1966. Morphology and evolution of inshore shell ridges and mud-mounds on modern intertidal flats at Bradwell, Essex. Proc. Geol. Ass. 77: 329–346.Google Scholar
  12. Hair, J. F. Jr., R. R. Anderson, R. L. Tatham & B. J. Grablowsky}, 1979. Multivariate data analysis. Petroleum Publishing Company, Oklahoma, 360 pp.Google Scholar
  13. Hayashi, I., 1991. Vertical distribution of macrobenthic organisms in the sediment of Wakasa Bay, Sea of Japan. Ophelia Suppl. 5: 555–564.Google Scholar
  14. Hodgkin, E. P., P. B. Birch, P. B. Black & R. B. Humphries, 1980. The Peel-Harvey estuarine system study (1976–1980). Depart. Cons. Envir. Report n. 9, Western Australia.Google Scholar
  15. Holme, N. A. & A. D. McIntyre, 1971. Methods for the study of marine benthos. Black. Sci. Publ., Oxford, 334 pp.Google Scholar
  16. Josefson, A. B., 1989. Do subsurface deposit-feeders partition resources by vertical stratification in the sediment? Sci. Mar. 53: 307–313.Google Scholar
  17. Kalejta, B. & P. A. R. Hockey, 1991. Distribution, abundance and productivity of benthic invertebrates at the Berg River estuary, South Africa. Estuar. coast. Shelf Sci. 33: 175–191.Google Scholar
  18. Kjerfve, B., L. B. Miranda & E. Wolanski, 1991. Modelling water circulation in an estuary and intertidal salt marsh system. Neth. J. Sea Res. 28: 141–147.Google Scholar
  19. Knoppers, B. A., F. P. Brandini & C. A. Thamm, 1987. Ecological studies in the Bay of Paranaguá. II. Some physical and chemical characteristics. Neritica 2: 1–36.Google Scholar
  20. Lana, P. C. & C. Guiss, 1991. Influence of Spartina alternifloraon structure and temporal variability of macrobenthic associations in a tidal flat of Paranaguá Bay (southeastern Brazil). Mar. Ecol. Prog. Ser. 73: 231–244.Google Scholar
  21. Lana, P. C. & C. Guiss, 1992. Macrofauna-plant-biomass interactions in a euhaline salt marsh in Paranaguá Bay. Mar. Ecol. Prog. Ser 80: 57–64.Google Scholar
  22. Lana, P. C., C. Guiss & S. T. Disaro, 1991. Seasonal variation of biomass and production dynamics for above-and belowground components of a Spartina alternifloramarsh in a euhaline sector of Paranaguá Bay (SE Brazil). Estuar. coast. Shelf Sci 32: 231–241.Google Scholar
  23. Long, S. P. & C. F. Mason, 1983. Saltmarsh ecology. Blackie & Son Ltd., Glasgow, 160 pp.Google Scholar
  24. McKee, K. L. & W. H. Patrick, Jr., 1988. The relationships of smooth cordgrass (Spartina alterniflora) to tidal datum: a review. Estuaries 1: 143–151.Google Scholar
  25. McLachlan, A. & E. Jaramillo, 1995. Zonation on sandy beaches. Oceanogr. Mar. Biol. annu. Rev. 33: 305–335.Google Scholar
  26. Moy, L. D. & L. A. Levin, 1991. Are Spartinamarshes a replaceable resource? A functional approach to evaluation of marsh creation efforts. Estuaries 14: 1–16.Google Scholar
  27. Netto, S. A., 1993. Composição, distribuiçao e variabilidade temporal damacrofauna bêntica de marismas e bancos não-vegetados da Baía de Paranaguá (Paraná, Brasil). MSc, Universidade Federal do Paraná, 91 pp.Google Scholar
  28. Netto, S. A. & P. C. Lana, 1995. Zonação e estratificação da macrofauna bêntica em um banco areno-lodoso do setor euhalino de alta energia da Baía de Paranaguá (Paraná, Brasil). Iheringia ser. Zool. 79: 27–37.Google Scholar
  29. Netto, S. A. & P. C. Lana, 1997. Influence of Spartina alterniflora on supefficial sediment characteristics of tidal flats in Paranaguá Bay (Southeastern Brazil). Estuar. coast. Shelf Sci. 44: 641–648.Google Scholar
  30. Ojeda, F. P. & J. H. T. Dearborn, 1989. Community structure of macroinvertebrates inhabiting the rocky subtidal zone in the Gulf of Maine: Seasonal and bathymetric distribution. Mar. Ecol. Prog. Ser. 57: 147–161.Google Scholar
  31. Pettibone, M. H., 1963. Marine polychaete worms of the New England region. Government Printing Office, Washington, 355 pp.Google Scholar
  32. Pomeroy, L. R. & J. Imberger, 1981. The physical and chemical environment. In L. R. Pomeroy & W. G. Wiegert (ed.), The ecology of a salt marsh, Springer-Verlag, New York: 21–36.Google Scholar
  33. Postma, H., 1988. Tidal flats areas. In B. O. Jansson (ed.), Coastal-Offshore Ecosystem Interaction, Springer-Verlag, Berlin: 102–121.Google Scholar
  34. Rutledge, P. A. & J. W. Fleeger, 1993. Abundance and seasonality of meiofauna, including harpacticoid copepod species, associated with stems of the salt-marsh cord grass, Spartina alterniflora. Estuaries 16: 760–768.Google Scholar
  35. Soriano-Sierra, E. J., 1990. Ecossistema demarismas. II. A produção primária. Anais do II Simpósio de Ecossistemas da costa sul e sudeste brasileira, Publ. ACIESP 71: 150–157.Google Scholar
  36. Underwood, A. S., 1993. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust. J. Ecol. 18: 99–116.Google Scholar
  37. Valiela, I., J. Wilson, R. Bushbawn, C. Riestma, D. Bryant, K. Foreman & J. Teal, 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. mar. Sci. 35: 261–260.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Sérgio A. Netto
    • 1
  • Paulo C. Lana
    • 2
  1. 1.Plymouth Marine LaboratoryUniversity of PlymouthPlymouthUnited Kingdom
  2. 2.Centro de Estudos do MarUniversidade Federal do ParanóPontal do Sul,C.P. 43Brazil

Personalised recommendations