, Volume 348, Issue 1–3, pp 69–80 | Cite as

The relationship between diatoms and surface water quality in the Høylandet area of Nord-Trøndelag, Norway

  • R. W. Battarbee
  • R. J. Flower
  • S. Juggins
  • S. T. Patrick
  • A. C. Stevenson


Although the ecological effects of surface wateracidification are now well researched, factorscontrolling the abundance and occurrence of aquaticorganisms in unpolluted acid-sensitive systems arepoorly known. The Høylandet region in central Norwayexperiences relatively low levels of atmosphericpollution and its surface waters, although acid, arenot significantly acidified. Hence lakes and streamsin this region were selected to study the influence ofwater chemistry on diatom algae. Relationships betweenthe two were explored using the multivariate techniqueof canonical correspondence analysis (CCA). Theprincipal water chemistry variables influencingspecies composition of periphytic diatoms were foundto be pH and water colour. Furthermore, therelationship between species abundance and pH wassufficiently strong to enable reconstruction of wateracidity from diatom data. Establishing the nature ofaquatic communities in atmospherically clean butgeologically sensitive regions is an important meansof identifying control systems against which therecovery of acidified lakes in polluted regions can beassessed. The Høylandet region has the potential toprovide a Europe-wide control system of this naturebut much further work is required to follow up andextend the results of this preliminary study.

diatoms water quality acidification pH calibration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battarbee, R. W., 1984, Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc. Lond. B 305: 451–477.Google Scholar
  2. Battarbee, R. W., 1986, Diatom analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 527–570.Google Scholar
  3. Battarbee, R. W., N. J. Anderson, P. G. Appleby, J. Flower, S. C. Fritz, E. Y. Haworth, S. Higgitt, V. J. Jones, A. Kreiser, M. A. R. Munro, J. Natkanski, F. Oldfield, S. T. Patrick, P. J. Raven, N. G. Richardson, B. Rippey & A. C. Stevenson, 1988. Lake Acidification in the United Kingdom. ENSIS, London.Google Scholar
  4. Berge, F., 1985. Relationships of diatom taxa to pH and other environmental factors in Norwegian soft-water lakes. Unpubl. Ph.D thesis, University of Maine, USA.Google Scholar
  5. Berge, F., Y-W. Brodin, G. Cronberg, F. El-Daoushy, H. I. Høeg, J. P. Nilssen, I. Renberg, B. Rippey, S. Sandøy, A. Timberlid & M. Wik, 1990. Palaeolimnological changes related to acid deposition and land-use in the catchments of two Norwegian soft-water lakes. Phil. Trans. r. Soc. Lond. B 327: 385–389.Google Scholar
  6. Birks, H. J. B., 1987. Methods for pH calibration and reconstruction from palaeolimnological data: procedures, problems, potential techniques. Proceedings Surface Water Acidification Programme (SWAP) Mid-Term Review Conference. Bergen 22–26 June 1987: 370–380.Google Scholar
  7. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B 327: 263–278.Google Scholar
  8. Charles, D. F., 1984. Recent pH history of BigMoose Lake (Adirondack Mountains, NewYork, USA) inferred from sediment diatom assemblages. Int. Ver. Theor. Angew. Limnol. 22: 559–566.Google Scholar
  9. Charles, D. F., 1985. Relationships between surface diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66: 994–1011.Google Scholar
  10. Christophersen, N., R. D. Vogt, C. Neal, H. A. Anderson, R. C. Ferrier, J. D. Miller & H. M. Seip, 1990. Controlling mechanisms for stream water chemistry at the pristine Ingabekken site in mid-Norway: Some implications for acidification models, Wat. Res. Res. 26: 59–67.Google Scholar
  11. Cleve-Euler, A., 1951–1955. Die diatomeen von Schweden und Finnland. Kungl. Svenska. Vetensk. Handl. Fjärde Ser. 2: 13–163, 4:1 3–158, 4:5 3–255, 5:4 3–231, 3:3 3–153.Google Scholar
  12. Davis, R. B., S. A. Norton, C. T. Hess & D. F. Braake, 1983. Palaeolimnological reconstruction of the effects of atmospheric deposition of acids and heavymetals on the chemistry and biology of lakes in New England and Norway. Hydrobiologia 103: 113–123.Google Scholar
  13. Davis, R. B., D. S. Anderson & F. Berge, 1985. Palaeolimnological evidence that lake acidification is accompanied by loss of organic matter. Nature. 316: 436–438.Google Scholar
  14. Drablö, D. & A. Tollan (eds), 1980. Ecological impact of acid precipitation: proceedings of an international conference, Sandefjord, Norway. SNSF Project, Oslo.Google Scholar
  15. Flower, R. J., 1986. The relationship between surface sediment diatom assemblages and pH in 33 Galloway lakes: some regression models for reconstructing pH and their application to sediment cores. Hydrobiologia 143: 93–105Google Scholar
  16. Flower, R. J., R. W. Battarbee & P. G. Appleby, 1987. The recent palaeolimnology of acid lakes in Galloway, southwest Scotland: diatom analysis, pH trends and the role of afforestation. J. Ecol. 75: 797–824.Google Scholar
  17. Flower, R. J., S. Juggins & R.W. Battarbee, 1997. Matching diatom assemblages in lake sediment cores and modern surface sediment samples; the implication for lake conservation with special reference to acidified systems. Hydrobiologia, 344: 27–40.Google Scholar
  18. Fritz, S. C., A. M. Kreiser, P. G. Appleby & R. W. Battarbee, 1990. Recent acidification of upland lakes in north Wales: palaeolimnological evidence. In Edwards, R. W. et al. (eds), Acid Waters In Wales. Kluwer Academic Publishers, Dordrecht: 27–37.Google Scholar
  19. Gauch, H. G. & G. B. Chase, 1974. Fitting the Gaussian curve to ecological data. Ecology 55: 1377–1381.Google Scholar
  20. Harriman, R. & B. R. S. Morrison, 1982. The ecology of streams draining forested and non-forested catchments in an area of central Scotland subject to acid precipitation. Hydrobiologia 88: 251–263.Google Scholar
  21. Harriman, R., B. R. S. Morrison, L. A. Caines, P. Collen & A. W. Watt, 1987. Long term changes in fish populations of acid streams and lochs in Galloway, south-west Scotland. Wat. Air Soil Pollut. 32: 89–112.Google Scholar
  22. Hustedt, F., 1927-1966. Die Kieselalgen Deutchlands, Österreichs und der Schweiz mit Berucksichtigung der übrigen Länder Europas sowie der angrenzenden Meersgebeite. Kryptogramen-Flora. 7, vol. 1 (1927–1930), 2 (1931–1959), 3 (1961–1966). Geest and Portig, Leipzig.Google Scholar
  23. Hustedt, F., 1930. Baccillariophyta (diatomeae), die susswasserflora von Mitteleuropas. In Pascher, A. (ed.), Fischer, Jena, Vol. 10.Google Scholar
  24. Hustedt, F., 1937-1939. Systematische undökologische Untersuchungen über den Diatomeen-flora von Java, Bali und Sumatra. Arch. Hydrobiologia (suppl.) 15/16.Google Scholar
  25. Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren, 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen.Google Scholar
  26. Meriläinen, J., 1967. The diatom flora and hydrogen ion concentration of the water. Ann. Bot. fenn. 4: 51–58.Google Scholar
  27. Muniz, I. P., 1987. Some recent observations on regional water chemistry, fish and aquatic animals from lakes and streams in the Høylandet area: a preliminary report. Proceedings Surface Water Acidification Programme (SWAP) Mid-Term Review Conference. Bergen: 259–265.Google Scholar
  28. Muniz, I. P. & E. Framstad, 1997. Surface water chemistry characteristics in the Lake Stor Grønningen drainage area, Høylandet, during periods of high and low discharge. Hydrobiologia 348: 49–68.Google Scholar
  29. Nygaard, G., 1956. Ancient and recent flora of diatoms and Chrysophyceae in Lake Gribs. In Berg, K. & J. C. Petersen (eds), Studies on the Humic Acid Lake Grisbo. Folia limnol. Scand. 8: 32–94.Google Scholar
  30. Patrick, S., D. T. Monteith & A. Jenkins, 1995. UK Acid Water Monitoring Network: The first Five Years–Analysis and Intepretation of Results April 1988–March 1993. Report for the Department of the Environment (UK). ENSIS Publishing, London.Google Scholar
  31. Renberg, I. & T. Hellberg, 1982. The pH history of lakes in southwestern Sweden as calculated from the subfossil diatom flora of the sediments. Ambio. 11: 30–33.Google Scholar
  32. Stevenson, A. C., H. J. B. Birks, R. J. F. Flower & R. W. Battarbee, 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18: 228–233.Google Scholar
  33. ter Braak, C. J. F., 1986. Canonical Correspondence Analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  34. ter Braak, C. J. F., 1987a. Unimodal models to relate species to environment. Thesis, Agricultural University of Wageningen.Google Scholar
  35. ter Braak, C. J. F., 1987b. CANOCO–A FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal components analysis and redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen.Google Scholar
  36. United Kingdom Acid Waters Review Group (UKAWRG), 1988. Acidity in United Kingdom Freshwaters. Second Report of the UK Acid Waters Review Group to the Department of Environment, London.Google Scholar
  37. Vogt, R. D. & I. P. Muniz, 1997. Soil and stream water chemistry in a pristine and boggy site in mid-Norway. Hydrobiologia 348: 19–38.Google Scholar
  38. Wik, M. & J. Natkanski, 1990. British and Scandinavian lake sediment records of carbonaceous particles from fossil-fuel combustion. Phil. Trans. r. Soc. Lond. B 327: 319–323.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • R. W. Battarbee
    • 1
  • R. J. Flower
    • 1
  • S. Juggins
    • 1
  • S. T. Patrick
    • 1
  • A. C. Stevenson
    • 2
  1. 1.Environmental Change Research CentreLondonEngland
  2. 2.Department of GeographyUniversity of NewcastleNewcastle-upon-TyneEngland

Personalised recommendations